Menu

Filter op
content
PONT Omgeving

Bijlage 9 Rekenvoorschrift buitenschietbanen

Inhoud

1

Inleiding

72

1.1

Doel

72

1.2

Structuur van het voorschrift

73

1.3

Gegevensbestanden

73

2

Definities en begrippen

73

2.1

Inleiding

73

2.2

Het begrip schietgeluid

73

2.3

Akoestische grootheden

74

2.4

Meteorologische grootheden

74

2.5

Beoordelingsgrootheden

76

2.6

Overige grootheden

76

2.6.1

Bodemparameters

76

2.6.2

Kogelparameters

77

2.7

Buitenschietbanen

77

2.8

Militaire oefenterreinen

80

2.9

Achtergronden bij de fysische modellering van schietgeluid

80

2.10

Symbolen

81

3

Beoordelingsgrootheid

84

3.1

Toepassingsbereik

84

3.2

Geluidbelasting

84

3.3

Bepaling gemiddelde toeslag voor laagfrequente componenten

86

3.4

Incidenteel gebruik

87

3.5

Salvo's

87

4

Rekenmethode

87

4.1

Inleiding

87

4.2

Toepassingsbereik

87

4.3

Principe van de rekenmethode

88

4.4

Toe te passen gegevensbestanden

90

4.4.1

Gegevensbestand van bronnen

90

4.4.2

Gegegevensbestand voor bepaling bodemdemping

92

4.4.3

Gegevensbestand met statistische gewichten

95

4.5

Invoergrootheden rekenmethode

97

4.5.1

Brongegevens

97

4.5.2

Bodemtype (hardheid/ruwheid)

99

4.5.3

Afschermende objecten

99

4.5.4

Reflecterende objecten

100

4.5.5

Keuze van rekenpunten

101

4.6

Berekening van het geluidexpositieniveau

101

4.6.1

Bronniveau

101

4.6.2

Geometrische demping

105

4.6.3

Luchtdemping

107

4.6.4

Bodemdemping

108

4.6.5

Afscherming

111

4.6.6

Niet-lineaire demping

117

4.6.7

Spiegelreflecties

118

4.6.8

Diffuse reflectie

120

5

Beschrijving invoergegevens

122

5.1

Gebruiksbeschrijving

122

5.1.1

Schietbanen

122

5.2

Rekenmodel

123

5.2.1

Toepassingsbereik

123

5.2.2

Gebruikte software

123

5.2.3

Modellering

123

5.2.4

Invoergegevens voor het rekenmodel

123

5.3

Berekeningsresultaten

123

Bijlage A: Methode voor de berekening van LEs, periode bij een geluidbelasting kleiner dan 50 dB(A)

123

Toelichting

124

1

Waarom een voorschrift specifiek voor schietgeluid

124

2

Beoordeling van schietgeluid

124

3

Fysische modellering van schietgeluid

125

4

De nieuwe elementen in dit voorschrift

126

5

Uitgangspunten

127

6

Beoordelingsgrootheid

127

1 Inleiding

1.1 Doel

Ten behoeve van de beoordeling van schietgeluid geeft dit voorschrift de technische procedures aan die in het kader van het Activiteitenbesluit milieubeheer moeten worden toegepast. De methodieken uit het voorschrift kunnen ook in een ander kader worden toegepast, zoals bij het opstellen van een MER.

1.2 Structuur van het voorschrift

Dit voorschrift bestaat uit voorliggend document in combinatie met vijf gegevensbestanden die voor de rekenmethode worden toegepast.

In hoofdstuk 1 wordt het doel van dit voorschrift beschreven.

In hoofdstuk 2 worden definities gegeven van fysische grootheden en van termen, die in het voorschrift gebruikt worden en die specifiek op schietgeluid van toepassing zijn. Voor de fysische grootheden wordt een onderscheid gemaakt tussen:

  • Akoestische grootheden

  • Meteorologische grootheden

  • Beoordelingsgrootheden

  • Overige grootheden

In § 2.7 worden een aantal typen schietinrichtingen beschreven. Aangegeven wordt waarin - akoestisch gezien – de verschillende soorten schietinrichtingen zich onderscheiden.

In § 2.8 worden de specifieke eigenschappen van schietgeluid beschreven waar dit zich onderscheidt van andere vormen van geluid.

Het hoofdstuk wordt afgesloten met een lijst van symbolen, die in het voorschrift worden gebruikt.

In hoofdstuk 3 wordt een beschrijving gegeven van de beoordelingsmethode. De hinderrelevante beoordelingsmaat wordt hier gepresenteerd en hoe die berekend kan worden uit het A- en C-gewogen geluidexpositieniveau.

In hoofdstuk 4 wordt een beschrijving gegeven van de rekenmethode voor het bepalen van het geluidexpositieniveau. Na een algemene inleiding wordt in § 4.2 het toepassingsbereik van de methode aangegeven. In § 4.4 staat hoe de gegevensbestanden, die ter beschikking zijn gesteld, moeten worden toegepast. In § 4.5 wordt aangegeven welke eisen gesteld worden aan de grootheden, waarmee de schietinrichting en omgeving gekarakteriseerd wordt. In § 4.6 wordt de eigenlijke rekenmethode gedefinieerd voor het bepalen van het geluidexpositieniveau.

In hoofdstuk 5 worden aanvullende eisen beschreven, die bij de rapportage van berekeningsresultaten in acht genomen dienen te worden.

In bijlage A is aangegeven hoe deelbijdragen aan de geluidbelasting kunnen worden bepaald op basis van de kans dat schietgeluid in een bepaalde juridische beoordelingsperiode gehoord wordt.

1.3 Gegevensbestanden

De gegevensbestanden die voor de rekenmethode worden toegepast worden ter beschikking gesteld. Ook worden er twee programma’s ter beschikking gesteld: ShowdB en ShowKog. Met het programma ShowdB kunnen deze gegevensbestanden bekeken worden en kan de afhankelijkheid van de verschillende parameters, die hierbij een rol spelen zichtbaar worden gemaakt. Met het programma ShowKog wordt de uitbreiding van kogel- en mondingsgeluid gevisualiseerd.

2 Definities en begrippen

2.1 Inleiding

In dit hoofdstuk worden de grootheden beschreven die van belang zijn voor de beoordeling van schietgeluid in het kader van zonering en vergunningverlening.

Definities worden gegeven van zowel de akoestische grootheden, de beoordelingsgrootheden als van de begrippen, die specifiek van toepassing zijn op schietgeluid.

2.2 Het begrip schietgeluid

Voorbeelden van schietgeluid zijn: Schoten met vuurwapens en detonaties van handgranaten, projectielen en bommen. Ook het geluid dat ontstaat bij gebruik van wapen- of knalsimulatoren valt hieronder. Een voorbehoud moet voor zware vliegtuigbommen gemaakt worden, aangezien het frequentiegebied hierbij zo laag is, dat het model vooralsnog niet kan worden toegepast (zie ook § 4.2).

2.3 Akoestische grootheden

In dit voorschrift worden een groot aantal akoestische begrippen gebruikt. In § 2.10 is een overzicht gegeven van de symbolen, die hiervoor gebruikt worden. Hieronder worden van de belangrijkste begrippen de definities gegeven, die specifiek voor schietgeluid worden gebruikt. Voor de overige akoestische begrippen wordt verwezen naar akoestische handboeken; frequentiewegingen zijn gedefinieerd in IEC 651.

Momentane geluiddruk: p [Pa]

De (momentane) geluiddruk in een geluidveld is gedefinieerd als de totale druk verminderd met de statische druk. De geluiddruk varieert met de tijd en met de positie.

Geluidexpositie: E [Pa2s]

De geluidexpositie E van een geluidpuls is gedefinieerd als de tijdsintegraal van het kwadraat van de momentane geluiddruk p(t) over de tijdsduur T van de geluidpuls:

Hierbij wordt in het algemeen een frequentieweging toegepast op het geluiddruksignaal p(t). In dit voorschrift worden de A-weging en de C-weging toegepast.

Geluidexpositieniveau: LE[dB(A) of dB(C)]

Het geluidexpositieniveau LE is gedefinieerd als tien keer de logaritme met grondtal 10 van de verhouding van de geluidexpositie E en een referentiewaarde E0 = (20µPa)2s:

De frequentieweging wordt aangegeven door een extra subscript, dus LAE of LCE voor de A-weging resp. de C-weging.

Bronniveau: LEb

Het bronniveau LEb van een puntbron is in deze gedefinieerd als:

waarin LE het geluidexpositieniveau is op een afstand r van de bron in een homogeen verliesvrij medium. In dit voorschrift wordt gerekend in octaafbanden, en de bronniveaus worden dus per octaafband opgegeven. Deze definitie is alleen van toepassing op mondingsgeluid en detonatiegeluid, die door puntbronnen worden gerepresenteerd. Voor kogelgeluid wordt een andere definitie van het bronniveau gehanteerd (zie § 4.6.1).

2.4 Meteorologische grootheden

Bij de rekenmethode wordt de (hinder-relevante) geluidbelasting bepaald als een gemiddelde over verschillende meteorologische klassen. Hierbij wordt dus rekening gehouden met het feit dat de geluidoverdracht sterk afhankelijk is van de plaatselijke weersomstandigheden. De verschillende meteorologische klassen worden getypeerd door het effectieve geluidsnelheidsprofiel. In deze paragraaf worden de definities gegeven van de grootheden die hierbij een rol spelen.

Windsnelheid: u [m/s]

De windsnelheid is aan sterke fluctuaties in de tijd onderhevig. Voor een beschrijving van de toestand van de atmosfeer wordt van de gemiddelde windsnelheid uitgegaan, waarbij gemiddeld is over een periode van typerend 5 minuten. De windsnelheid neemt over het algemeen met de hoogte toe. In de rekenmethode wordt ervan uitgegaan dat de gemiddelde windsnelheid in het geluidpad niet met de horizontale positie varieert. Met name bij land-waterovergangen kan dit echter wel het geval zijn. De methode is dan niet zondermeer toepasbaar. In dit voorschrift wordt alleen de horizontale component van de windsnelheid gebruikt, aangeduid met het symbool u.

Temperatuur: t [°C] en T [K]

De temperatuur is aan fluctuaties in de tijd onderhevig. Voor een beschrijving van de toestand van de atmosfeer wordt van het gemiddelde uitgegaan, waarbij gemiddeld is over een periode van typerend 5 minuten. In de rekenmethode is ervan uitgegaan dat de gemiddelde temperatuur in het geluidpad alleen met de hoogte varieert. Met name bij land-waterovergangen treden ook horizontale temperatuurverschillen op. De methode is dan niet zondermeer toepasbaar. Zowel de temperatuur in graden Celsius als de absolute temperatuur in Kelvin worden gebruikt.

Windrichting φ [°]

De windrichting is de richting van waaruit de wind komt. De windrichting wordt uitgedrukt in graden ten opzichte van het noorden (kloksgewijs). Westenwind komt dus overeen met 270°.

Effectieve geluidsnelheid: ceff[m/s]

De effectieve geluidsnelheid, d.w.z. de snelheid waarmee een geluidgolf zich in de atmosfeer voortplant, wordt bepaald door de absolute temperatuur T, de horizontale windcomponent u, en het hoekverschil tussen de windrichting φ en de richting θ waarin het geluid zich voortplant (φ en θ zijn hoeken t.o.v. het geografische noorden; dus bv. φ = 90° voor oostenwind, en θ = 90° voor geluidvoortplanting van west naar oost).

De geluidsnelheid is dus gelijk aan de som van de ‘thermische geluidsnelheid’ en de vectorwind, de component van de wind in de geluidvoortplantingsrichting. In dit voorschrift wordt de aanduiding ‘effectief’ meestal weggelaten, en wordt de ‘effectieve geluidsnelheid’ als de ‘geluidsnelheid’ aangeduid. In overeenstemming hiermee wordt het symbool c gebruikt in plaats van ceff.

Geluidsnelheidsprofiel c(h) [m/s]

Het verloop van de effectieve geluidsnelheid met de hoogte (h) wordt aangeduid als het geluidsnelheidsprofiel c(h). Dit verloop is een gevolg van de variaties van de temperatuur T en de windsnelheid u met de hoogte. In dit voorschrift wordt de (hinder-relevante) geluidbelasting berekend als een gewogen gemiddelde over 27 meteorologische klassen. Deze klassen worden getypeerd door het geluidsnelheidsprofiel waarbij drie groepen worden onderscheiden (zie § 4.4.2).

Relatieve vochtigheid rv[%]

De relatieve vochtigheid van de atmosfeer is gedefinieerd als de partiële druk van waterdamp in de atmosfeer gedeeld door de verzadigings-dampdruk, uitgedrukt als een percentage.

Ruwheidslengte z0[m]

Vlakbij de bodem is de windsnelheid vrijwel gelijk aan nul. De ruwheidslengte van de bodem is gedefinieerd als de hoogte waar beneden de windsnelheid gelijk is aan nul. Voor de bepaling van de ruwheidslengte kan gebruik gemaakt worden van de Davenport-classificatie. Volgens deze classificatie bedraagt de ruwheidslengte 0,0002 m voor een wateroppervlak, 0,03 meter voor open grasland en 0,25 meter voor heide.

Meteorologische dag

Periode tussen één uur na zonsopgang en één uur voor zonsondergang.

Meteorologische nacht

Periode tussen één uur voor zonsondergang en één uur na zonsopgang.

Juridische dag, avond en nacht

Er worden drie beoordelingsperioden onderscheiden:

  • dagperiode 07.00 – 19.00 uur;

  • avondperiode 19.00 – 23.00 uur;

  • nachtperiode 23.00 – 07.00 uur.

Windroossector [χ,ζ] [°

Gedeelte van de windroos, dat voor het gebruik van de schietinrichting relevant is. Van de windroossector wordt de sectorhoek χ gegeven en het midden van de windroossector ζ. Bij een windroossector van bijvoorbeeld [90°, 270°] is het gebruik van de schietinrichting alleen relevant bij windrichtingen van (270° ± 45°) hetgeen overeenkomt met windrichtingen tussen noordwest en zuidwest (zie ook figuur 4.4).

2.5 Beoordelingsgrootheden

Geluidbelasting ten gevolge van schietgeluid: Bs[dB(A)]

De hinderrelevante geluidbelasting ten gevolge van schietgeluid wordt aangegeven door het symbool Bs en uitgedrukt in dB(A). De dosis-effect relatie voor hinder ten gevolge van wegverkeersgeluid is hierbij als referentie gekozen. Dit houdt in dat bij gelijke hinderbeleving de getalwaarden van de geluidbelasting van schietgeluid en wegverkeersgeluid aan elkaar gelijk zijn.

In de geluidbelasting is de gemiddelde invloed van het weer op de geluidoverdracht verwerkt.

De geluidbelasting kan onderverdeeld worden in deelgeluidbelastingen van diverse schietactiviteiten. De totale geluidbelasting is de energetische som van deze deelgeluidbelastingen.

In analogie met de beoordelingsprocedures voor wegverkeers- en industriegeluid wordt bij zonering van schietgeluid de geluidbelasting uitgedrukt in een dag-avond-nachtwaarde (Bs,dan), die bepaald wordt als een gewogen gemiddelde (zie § 3.1) van de Bs waarden voor de drie juridische beoordelingsperioden:

  • Bs,dag dag: 07.00 – 19.00 uur;

  • Bs,avond avond: 19.00 – 23.00 uur;

  • Bs,nacht nacht: 23.00 – 07.00 uur.

2.6 Overige grootheden

2.6.1 Bodemparameters

De bodem wordt akoestisch gekarakteriseerd door twee parameters: de akoestische bodemhardheid en de bodemruwheid.

De akoestische bodemhardheid is bepalend voor reflectie en absorptie van geluid door de bodem. Als maat voor de bodemhardheid wordt de stromingsweerstand σ gehanteerd. De stromingsweerstand wordt gedefinieerd aan de hand van een situatie waarin een luchtstroom door een laag van het materiaal een drukval over de laag veroorzaakt. De stromingsweerstand is dan gelijk aan verhouding van de drukval Δp en de stroomsnelheid v, gedeeld door de laagdikte L. In formule:

In deze rekenmethode voor schietgeluid wordt van drie waarden voor de akoestische bodemhardheid uitgegaan: reflecterend, absorberend en zeer absorberend. Voor de stromingsweerstand wordt voor een zeer absorberende bodem en een absorberende bodem respectievelijk 1.105 Nsm-4 en 3.105 Nsm-4gehanteerd. Voor een akoestisch reflecterende bodem wordt een oneindig grote stromingsweerstand aangenomen (zie ook § 4.5.2).

De bodemruwheid beïnvloedt het windsnelheidsprofiel in de atmosfeer boven de bodem, en daardoor indirect de geluidoverdracht. Een maat voor de bodemruwheid is de ruwheidslengte z0 (zie § 2.4).

2.6.2 Kogelparameters

Voor de berekening van het niveau van het kogelgeluid zijn in eerste instantie twee parameters van belang: de kogeldiameter dkogel gedefinieerd als de maximale diameter van de kogel en de effectieve lengte lkogel gedefinieerd als de axiale afstand van de punt van de kogel tot aan de plaats waar de diameter maximaal is.

Figuur 2.1: Effectieve lengte lkogel en diameter dkogel van een kogel

Het gebied waar het kogelgeluid kan worden waargenomen hangt af van de snelheid van de kogel. Deze snelheid wordt benaderd door een lineaire relatie:

vk = v0 + v1x (2.6)

met

v0 de snelheid van de kogel bij het verlaten van de vuurmond;

v1 de verandering van de snelheid per eenheid van lengte;

x de afstand langs de kogelbaan tot de vuurmond.

Een afgeleide parameter die een rol speelt bij de berekening van kogelgeluid is het Mach-getal. Dit is gedefinieerd als de verhouding van de snelheid vk van de kogel en de geluidsnelheid c10 (hiervoor wordt in dit voorschrift de waarde bij 10°C en 1 atmosfeer gehanteerd: c10 = 337.6 m/s).

2.7 Buitenschietbanen

Op verschillende soorten banen wordt geschoten dan wel andersoortig knalgeluid gemaakt. In onderstaande tabel is een overzicht gegeven met voorbeelden van baantypen die in Nederland voorkomen en die in het kader van dit voorschrift relevant zijn. Voor het vaststellen van de geluidbelasting vragen de verschillende baantypen om een andere aanpak.

Vrije schietbanen

Dit zijn schietbanen, meestal voorzien van een kogelvanger, en mogelijk een overkapping boven de standplaats van de schutters, doch zonder voorzieningen ter beperking van de omvang van de onveilige zone zoals poorten, kokers, schermen, etc.

De vrije schietbanen zijn onder te verdelen in:

  • vrije geweerbanen;

  • vrije mitrailleurbanen en vrije pistoolbanen.

De lengte van een vrije geweerbaan is doorgaans 300 m; het aantal schietpunten varieert.

In principe bestaat tussen de uitvoering van een vrije mitrailleurbaan en die van een vrije pistoolbaan geen verschil. Een vrije pistoolbaan heeft een lengte van 25m; het aantal schietpunten bedraagt doorgaans vijf tot tien.

Schietkampen

Een schietkamp bestaat uit één of meer schietbanen en/of schietpunten. De doelafstanden zijn hierbij groter dan bij vrije schietbanen. Deze terreinen beslaan meerdere vierkante kilometers. Afhankelijk van de inrichting wordt met diverse wapentypen geschoten variërend van lichte handvuurwapens tot 155 mm Houwitsers.

Poortbanen

Dit zijn schietbanen waarbij door middel van poorten en kogelvangers wordt voorkomen dat – bij normaal gebruik – een direct schot de baan kan verlaten, waardoor een zekere mate van veiligheid wordt verkregen en met een beperkte onveilige zone kan worden volstaan. De poortbanen zijn onder te verdelen in geweerpoortbanen en pistoolpoortbanen.

Een geweerpoortbaan heeft bijvoorbeeld een lengte van 100 m, 200 m of 300 m. Een pistoolpoortbaan is 20 m of 25 m lang. Het aantal schietpunten op de banen is meestal zes. Bij pistoolpoortbanen maakt de eerste poort deel uit van een schiethuisje waarin de schutters zich bevinden.

Het geluiduitstralingspatroon van een poortbaan is, door de vele reflecties die mogelijk zijn, zeer complex. Voor de berekening van de geluidbelasting wordt in de rekenmethode deze baan door een puntbron gemodelleerd. Deze beschrijving is pas geldig op enige afstand van deze baan. In § 4.5.1 wordt hier nader op ingegaan.

Schermenbanen

Dit zijn schietbanen waarbij door middel van schermen, zijwallen of zijwanden en een overkapping boven de kogelvanger wordt voorkomen dat – bij normaal gebruik van de baan – een direct schot en/of een ricochet de baan kan verlaten, waardoor geen onveilige zone in acht genomen behoeft te worden. De schermenbanen zijn onder te verdelen in schermenbanen voor geweer en schermenbanen voor pistool.

Een schermenbaan voor geweer heeft een lengte van bijvoorbeeld 100 m, 200 m of 300 m. Een schermenbaan voor pistool is 25 m lang. Er zijn op schermenbanen meestal zes schietpunten. Het schuttersgedeelte van de baan is meestal overkapt. Ook zijn er voorbeelden waarbij de schutter, gelegen op een brits, vanuit een omsloten ruimte door een klein venster schiet. Een 100 m baan kan ook voor het schieten met vuist-vuurwapens worden gebruikt. De schutter gaat hiertoe naar voren op een afstand van 25 m of minder van de kogelvanger. Deze schietpositie is meestal niet overkapt.

De schermen zijn van beton en bekleed met hout. Akoestisch kunnen deze schermen de geluiduitstraling naar de omgeving sterk beïnvloeden. Naast een geluidreducerende invloed kunnen ze in bepaalde richtingen ook een geluidversterkende invloed hebben door reflectie van het geluid tegen deze schermen. Op schermenbanen waar voldoende aanvullende akoestische maatregelen zijn getroffen, zal buiten de baan alleen kogelgeluid een rol van betekenis spelen.

Het geluiduitstralingspatroon van een schermenbaan is, door de vele reflecties die mogelijk zijn, zeer complex. Voor de berekening van de geluidbelasting wordt in de rekenmethode de schermenbaan gemodelleerd door één of meer puntbronnen. Deze beschrijving is pas geldig op enige afstand van de schermenbaan. In § 4.5.1 wordt hierop nader op ingegaan.

Poortkokerbanen

Dit zijn schietbanen waarbij door middel van een poort en een koker wordt voorkomen dat – bij normaal gebruik van de baan – een direct schot en/of een ricochet de baan kan verlaten, waardoor geen onveilige zone in acht genomen behoeft te worden.

Een poortkokerbaan heeft meestal een lengte van 25 m. Het aantal schietpunten bedraagt doorgaans vijf of zes. De schietposities bevinden zich net buiten het gebouw (aan de open zijde) of voor kortere doelafstanden in het gebouw (de kokers zijn groot genoeg om in te staan). De bodem van de schietposities net buiten het gebouw is verlaagd uitgevoerd. Het gebouw is voorzien van een sheddak dat aan dezelfde kant als waar de opening van het gebouw ligt kleine ramen heeft.

Ook een poortkokerbaan wordt in de rekenmethode gemodelleerd door een puntbron. De geluiduitstraling is sterk richtingsafhankelijk. Met name naar achteren toe straalt een poortkokerbaan het meeste geluid uit. Door de afschermende werking van wanden en plafond is de geluiduitstraling lager naarmate het schietpunt dieper in het gebouw ligt.

Kokerbanen

Dit zijn schietbanen waarbij door middel van een koker wordt voorkomen dat – bij normaal gebruik van de baan – een direct schot en/of een ricochet de baan kan verlaten, waardoor geen onveilige zone in acht genomen behoeft te worden.

Een kokerbaan heeft slechts één open zijde achter de standplaats van de schutters. Een kokerbaan heeft doorgaans een lengte van 25 m. De schietposities bevinden zich bij de open zijde of (voor kortere doelafstanden) in het gebouw. Op een afstand van ca 2 m van de kogelbaan is meestal aan beide kanten een verbreding van ca 0,55 m in de koker aangebracht waarin zich een (niet aanschietbare) deur bevindt. De bodem van de schietposities net buiten het gebouw is meestal verlaagd uitgevoerd. Het gebouw is voorzien van een sheddak dat aan dezelfde kant als waar de opening van het gebouw ligt kleine ramen heeft.

Ook een kokerbaan wordt in de rekenmethode gemodelleerd door een puntbron. De geluiduitstraling is sterk richtingsafhankelijk. Met name naar achteren toe straalt een kokerbaan het meeste geluid uit. Door de afschermende werking van wanden en plafond neemt het bronniveau af als het schietpunt zich meer in het gebouw bevindt.

Handgranatenbanen

Dit zijn banen waar met scherpe handgranaten kan worden geworpen. Een handgranatenbaan bestaat uit een schuilplaats voor de oefenende eenheid, een munitie opslag- en verstrekkingspunt, een werppunt, een waarnemingspunt voor de officier belast met de leiding en een dekkingswal. Voorts behoort tot de baan een geëgaliseerde terreinstrook, breed ten minste 50 m en diep ten minste 75 m, waar de geworpen granaat terecht dient te komen.

Miniatuurschietbanen

Dit zijn schietbanen waarbij geschoten wordt met geweren, kaliber .22 inch, bevestigd in of aan boordkanonnen van voertuigen. Een miniatuurschietbaan bestaat meestal uit een verhard opstelplateau voor de voertuigen, een doelengebied van relatief grote omvang, doorgaans aangeduid als ‘zandbak’, en een kogelvanger, al dan niet voorzien van een overkapping.

Banen met schietbomen

Op deze banen wordt er vanaf een vaste standplaats op een schietboom geschoten waarop een doel is aangebracht. Er wordt geschoten met geweren, lucht- en/of CO2-wapens of kruis- of handbogen. Behalve bij de kruis- en handbogen wordt gebruik gemaakt van een oplegsteun voor het wapen. In enkele gevallen is er ook een kogelvanger aanwezig.

Afhankelijk van het type doel wordt het aangeduid als Oud Limburgs schieten, Brabants schieten of Gelders schieten. Bij Oud Limburgs schieten wordt de hark of de vogel als doel gebruikt. De hark is een houten raamwerk waarop een groot aantal blokjes hout is bevestigd. De vogel is een blok hout in de vorm van een vogel. Bij Brabants schieten wordt op de wip (een stalen schijfje) of op de gaai (vogel) geschoten. Bij Gelders schieten wordt geschoten op de vogel, de schijf of de lepel. Bij het schieten op de schijf wordt een papieren roos gebruikt. Bij het lepelschieten bestaat het doel uit een aantal lepels die kunnen scharnieren en die na een treffer weer overeind gehaald kunnen worden.

Miniatuur kanonbanen

Dit zijn schietbanen waar met miniatuur kanonnen wordt geschoten onder een zeer kleine elevatie (5 graden) op doelen op een afstand van 25 tot 50 m.

Boogbanen

Boogbanen worden gebruikt voor schieten met kruis- en handbogen. Dit type baan is in dit voorschrift buiten beschouwing gelaten, omdat de geluidbelasting op de omgeving veroorzaakt door schieten met kruis- en handbogen verwaarloosbaar is.

Kleiduivenschietbanen

Op kleiduivenschietbanen wordt geschoten met hageljachtgeweren. Het doel is een kleiduif (schijf gebakken klei) die door middel van een hand- of mechanisch gedreven kleiduiven-werpmachine wordt weggeworpen over een afstand van maximaal 80 m.

Kleiduivenschietbanen kunnen in verschillende variaties voorkomen:

  • Op een skeetbaan werpen twee tegenover elkaar staande machines, die zijn opgesteld in een hoge en een lage toren, de kleiduiven elk in een bepaalde richting. De schutter moet voortdurend langs een halve cirkel, met de twee werpmachines op de hoekpunten, van standplaats wisselen. Er zijn acht verschillende standplaatsen.

  • Bij een trapbaan staat de werpmachine op een vaste plaats opgesteld en zijn er meestal tien standplaatsen voor de schutter. De afstand van de schietpunten tot de werpmachine is 10 tot 15 m.

  • Bij een enkelvoudige oefenbaan is er slechts één vaste standplaats voor de schutter. De werpmachine is verplaatsbaar.

  • Bij een hazenbaan wordt meestal geschoten op een metalen schijf in de vorm van een haas waarop een kleiduif is aangebracht. De haas wordt voortbewogen langs draden of op rails met een snelheid van ongeveer 5 m/s. De schutter staat op 15, 20 of 25 m afstand van het doel.

2.8 Militaire oefenterreinen

Op militaire oefenterreinen wordt niet met een scherpe patroon (‘Ball’) geschoten, maar wordt een losse patroon (‘blank’) toegepast, die over het algemeen minder geluid voortbrengt. Verder wordt soms ook gebruik gemaakt van knalsimulatie-middelen.

Gevechtsituaties worden nagebootst waarbij er sprake is van een aanvallende en een verdedigende partij. Plaats en richting van schieten bij deze oefeningen zijn slechts bij benadering bekend. Het verdient daarom aanbeveling van een referentieoefening uit te gaan. In § 4.5.1 wordt hier nader op ingegaan.

2.9 Achtergronden bij de fysische modellering van schietgeluid

Bij het geluid dat ontstaat door het gebruik van een vuurwapen kunnen drie verschillende bijdragen worden onderscheide:

  • mondingsgeluid

  • detonatiegeluid

  • kogelgeluid

In deze paragraaf zullen we de specifieke fysische eigenschappen van schietgeluid nader toelichten om inzicht te geven in de modellering van schietgeluid.

Mondingsgeluid en detonatiegeluid

Door de explosie van de voortdrijvende lading in een projectiel ontstaat er een grote drukpuls. Het hierdoor opgewekte geluidveld laat zich goed beschrijven door een akoestische puntbron met een richtingsafhankelijke geluiduitstraling. Voor lichte vuurwapens is de richtingsafhankelijkheid over het algemeen groter dan bij de zwaardere wapentypen. Het verschil tussen het niveau vóór en achter het wapen kan bij lichte handvuurwapens in de orde van 15 dB zijn.

Het bronpunt voor lichte handvuurwapens ligt aan het einde van de loop. Voor zwaardere wapens ligt het broncentrum iets verder voor de loop (zie hiervoor ook § 4.5.1). Indien op korte afstand van een wapen afschermende objecten staan opgesteld moet hier terdege rekening mee gehouden worden.

Terugstootloze vuurwapens hebben in principe twee bronpunten, één aan de voorkant (in Engels: muzzle blast) en één aan de achterzijde van het wapen (in engels: breech blast). Het niveau van het bronpunt aan de achterzijde van het wapen is vele malen sterker dan het bronpunt aan de voorzijde van het wapen, zodat in goede benadering van één bronpunt aan de achterzijde van het wapen kan worden uitgegaan.

Het akoestisch model dat in dit voorschrift wordt beschreven is een lineair model. Op korte afstand van het wapen zijn de geluiddrukniveaus echter dermate hoog dat de geluidoverdracht niet door een lineair model kan worden beschreven. Op enige afstand van de bron zijn de drukniveaus echter zover afgenomen dat een beschrijving door een lineair model wel kan worden toegepast. Dit betekent dat het model niet op korte afstanden van de bron kan worden toegepast (zie ook § 4.2).

Kogelgeluid

Kogelgeluid heeft een principieel ander gedrag dan mondings- en detonatiegeluid. Het ontstaat door verstoring van de lucht door een supersone kogel. De luchtverstoring is geconcentreerd op een kegelvormig oppervlak, dat zich met de geluidsnelheid vanaf de kogelbaan uitbreidt. Dit oppervlak wordt de Mach-golf genoemd. Op het moment dat de Mach-golf een waarnemer passeert, wordt het als een knal waargenomen. De kogelknal wordt altijd eerder waargenomen dan de mondingsknal. De halve tophoek μ van de kegelvormige Mach-golf wordt de Mach-hoek genoemd. De Mach-hoek wordt bepaald door de geluidsnelheid c10 en de kogelsnelheid vk, volgens de relatie:

De kogelsnelheid neemt in het algemeen af langs de kogelbaan, waardoor de Mach-hoek toeneemt (het complement van de Mach-hoek, ξ = 90° – μ neemt dus juist af langs de kogelbaan). Hierdoor is de Mach-golf geen perfect kegeloppervlak, maar een gekromd kegeloppervlak. Dit is geïllustreerd in figuur 2.2.

Bij de modellering van kogelgeluid worden drie gebieden onderscheiden, die aangegeven zijn in figuur 2.2. Het niveau van kogelgeluid is het hoogst in gebied II, het Mach-gebied. Het niveau is aanzienlijk lager in gebied III, maar niet verwaarloosbaar. Het niveau in gebied I is nog lager, en wordt verwaarloosd. In figuur 2.2 is aangenomen dat de kogel nog supersoon is bij het doel, d.w.z. dat de kogelsnelheid bij het doel groter is dan de geluidsnelheid. Het kan ook voorkomen dat de kogel subsoon wordt vóór het bereiken van het doel. De hoek ξ is dan, op het punt waar de kogel subsoon wordt, gelijk aan nul. Gebied II bestrijkt dan het volledige gebied achter het doel; er is dan geen gebied III.

Figuur 2.2: Illustratie van de gebieden I, II en III die gebruikt worden bij de modellering van kogelgeluid. Gebied II wordt het Mach-gebied genoemd. De gekromde lijnen representeren de doorsnede van de (kegelvormige) Mach-golf op het moment dat de kogel het doel bereikt. De Mach-hoek bij het doel is aangegeven als μe.

2.10 Symbolen

Symbool

Eenheid

Omschrijving

behandeld in

α

dB

constante voor bepalen hinderrelevante geluidbelasting (47 dB)

3.2

αabs

absorbtiecoëfficient van materialen

4.6.5

αe

°

elevatiehoek van de loop van het wapen

4.4.1

β

dB-1

constante voor bepalen hinderrelevante geluidbelasting (0.015 dB-1)

3.2

γ

tophoek van wal

4.5.3

εhor

°

effectiviteit van de reflectie in het horizontale vlak

4.6.7

εver

effectiviteit van de reflectie in het verticale vlak

4.6.7

ζ

°

midden van windroossector, die voor het gebruik van de schietinrichting relevant is

2.4

θ

°

geluidvoortplantingsrichting t.o.v. het noorden (bijv θ = 90° voor geluidvoortplanting van west naar oost)

2.4

λ

m

golflengte

4.6.7

μ

°

Mach-hoek, halve tophoek van de kegel gevormd door het golffront van de Mach-golf

2.9

ξ

°

complement van de Mach-hoek

2.9

ξbe

°

grenshoeken van het Mach-gebied

2.9 en 4.6.2

ρ

reflectiviteit {reflectiecoëfficiënt voor de geluidenergie (1-αabs)}

4.5.4

σ

kPa s m-2

stromingsweerstand

2.6 en 4.5.2

φ

windrichting (hoek t.o.v. het noorden, bijv. φ = 90° komt overeen met oostenwind)

2.4

ϕ

°

hoek tussen de lijn van bron naar rekenpunt en de vuurlijn (in bovenaanzicht vanuit de bron met de klok mee gemeten)

4.4.1

ϕr

°

diffractiehoek van rekenpunt op top van scherm

4.6.5

ϕs

°

diffractiehoek van bron op top van scherm

4.6.5

Δϕr

°

correctie op ϕr als gevolg van straalkromming

4.6.5

Δϕs

°

correctie op ϕs als gevolg van straalkromming

4.6.5

χ

°

sectorhoek van windroossector, die voor het gebruik van de schietinrichting relevant is

2.4

ψ

°

schietrichting t.o.v. het noorden in het horizontale vlak

4.5.1

b

geluidbron

3.2 en 4.3

bn

m/s

coëfficiënt in formule voor geluidsnelheidprofielen

4.4.2

Bs

dB(A)

geluidbelasting ten gevolge van schietgeluid

2.5

Bs,avond

dB(A)

geluidbelasting in de juridische avondperiode

2.5 en 3.2

Bs,dag

dB(A)

geluidbelasting in de juridische dagperiode

2.5 en 3.2

Bs,dan

dB(A)

geluidbelasting uitgedrukt als dag-avond-nachtwaarde

2.5 en 3.2

Bs,nacht

dB(A)

geluidbelasting in de juridische nachtperiode

2.5 en 3.2

Bs,periode

dB(A)

geluidbelasting in een bepaalde juridische beoordelingsperiode (dag, avond of nacht)

3.4

c

m/s

geluidsnelheid

2.4

c(h)

m/s

geluidsnelheidsprofiel

2.4

c10

m/s

geluidsnelheid bij 10°C en 1 atmosfeer (337.6 m/s)

2.6.2

ceff

m/s

effectieve geluidsnelheid

2.4

deff

m

afstand tussen naburige cilinders bij modellering diffuse reflecties

4.5.4 en 4.6.8

dkogel

m

maximale diameter van kogel

2.6.2

dmax

m

maximale afstand van rekenpunt naar rand van brongebied

4.6.1.

dmin

m

minimum afstand van rekenpunt naar rand van brongebied

4.6.1

Dbodem

dB

demping t.g.v. de bodem

4.4.2 en 4.6.4

Dgeo

dB

geometrische demping

4.6.2

Dlucht

dB

demping t.g.v. luchtabsorptie

4.6.3

Dnlin

dB

extra dempingsterm als gevolg van niet-lineaire geluidoverdracht van kogelgeluid

4.6.6

Drefl

dB

reflectiedemping

4.6.7 en 4.6.8

Dscherm

dB

demping door geluidwerende obstakels

4.6.5

ΔD

dB

tophoekcorrectie

4.6.5

E

Pa2s

geluidexpositie

2.3

E0

Pa2s

referentiewaarde van de geluidexpositie ((20µPa)2s)

2.3

fa

fractie van het geluidpad waarvoor de bodem absorberend is

4.6.4

fabs

fractie van het geluidpad waarvoor de bodem absorberend of zeer absorberend is

4.6.5

fh

fractie van het geluidpad waarvoor de bodem hard is

4.6.4

fk

Hz

octaafbandmiddenfrequentie

(fk = 16 Hz, 31,5 Hz, ..., 4000 Hz)

4

fz

fractie van het geluidpad waarvoor de bodem zeer absorberend is

4.6.4

fkogel

Hz

karakteristieke frequentie van kogelgeluid

4.6.1

gd

gewichtsfactoren voor de meteorologische dag. Dit komt overeen met de kans dat een meteorologische situatie in een bepaalde meteorologische klasse valt. Een meteorologische klasse wordt gekarakteriseerd door één van de 27 geluidsnelheidsprofielen.

3.2 en 4.4.3

gn

gewichtsfactoren voor de meteorologische nacht (zie ook hierboven).

3.2 en 4.4.3

h

m

hoogte boven het plaatselijk maaiveld

h0

m

referentiehoogte (0.1 m)

4.4.2

heff

m

effectieve hoogte van bronpunt of rekenpunt als gevolg van een scherm

4.6.5

hr

m

hoogte van het rekenpunt boven het plaatselijke maaiveld

4

hs

m

hoogte van het bronpunt boven het plaatselijke maaiveld

4

hwapen

m

hoogte van het draaipunt van de loop van een wapen

4.4.1

Hp

factor waarmee de eindige hoogte en breedte van een scherm in rekening wordt gebracht

4.6.5

kperiode

kans dat schietgeluid in een bepaalde juridische beoordelingsperiode gehoord wordt

bijlage A

lkogel

m

afstand van de punt van de kogel tot aan het punt waar de kogel de grootste diameter heeft

2.6.2

L

m

correlatielengte (1.1 m)

4.6.2

LAeq,periode

dB(A)

equivalente geluidniveau vanwege schietgeluid voor een gemiddelde dag voor een bepaalde juridische beoordelingsperiode

3.3

LE

dB

Geluidexpositieniveau, immissieniveau

2.3 en 4.3

LAE

dB(A)

A-gewogen geluidexpositieniveau

2.3

LCE

dB(C)

C-gewogen geluidexpositieniveau

2.3

LEb

dB

bronniveau

2.3 en 4.3

L*Eb

dB

bronniveau van een spiegelbron

4.3 en 4.6.7

LEs,periode(b,m)

dB(A)

deelbijdrage aan de geluidbelasting van een enkel schot van een bron b bij een meteorologische klasse m. De juridische beoordelingsperiode (dag, avond of nacht) is alleen relevant als een geluidbelasting < 50 dB(A) wordt berekend (zie bijlage A).

3.2

dB(A)

deelbijdrage aan de geluidbelasting voor de meteorologische dag van een enkel schot van een bron b als gewogen gemiddelde over 27 meteorologische klassen. De juridische beoordelingsperiode (dag, avond of nacht) is alleen relevant als een geluidbelasting < 50 dB(A) wordt berekend (zie bijlage A).

3.2

dB(A)

deelbijdrage aan de geluidbelasting voor de meteorologische nacht van een enkel schot van een bron b als gewogen gemiddelde over 27 meteorologische klassen. De juridische beoordelingsperiode (dag, avond of nacht) is alleen relevant als een geluidbelasting < 50 dB(A) wordt berekend (zie bijlage A).

3.2

Lloop

m

lengte van de loop vanaf draaipunt tot bronpunt

4.4.1

Ln

m

breedte van deelgebied van brongebied

4.6.1

m

meteorologische klasse

3.2, 4.3 en 4.4.2

M

Mach-getal, relatieve kogelsnelheid ten opzichte van de geluidsnelheid

2.6.2

n2

gemiddelde aantal bomen per oppervlakte-eenheid

4.5.4 en 4.6.8

Ncil

aantal cilinders in een segment bij modellering diffuse reflecties

4.6.8

Navond

aantal knallen per jaar in de avondperiode voor een bron

3.2

Ndag

aantal knallen per jaar in de dagperiode (inclusief zon- en feestdagen)

3.2

Nnacht

aantal knallen per jaar in de nachtperiode voor een bron

3.2

Nv

aantal gebieden dat door het geluidpad wordt doorkruist met bodemtype v=h

4.6.4

Nzondag,dag

aantal knallen per jaar in de dagperiode op zon- en feestdagen

3.2

Oi

deeloppervlak van het brongebied

4.6.1

Otot

totale oppervlak van het brongebied

4.6.1

p

Pa

momentane geluiddruk

2.3

Pimp

dB

toeslag voor het impulsmatig karakter van het schietgeluid

3.3

Plf

dB

toeslag voor laagfrequente componenten in het schietgeluid

3.3

Pperiode

aantal dagen per jaar dat op de inrichting wordt geschoten in een bepaalde juridische beoordelingsperiode (dag, avond of nacht), onafhankelijk van het wapen

3.4

r

m

afstand

rb

m

afstand van de bron tot het reflectiepunt

4.6.7

rcil

m

straal van cilinders bij modellering diffuse reflecties.

4.5.4 en 4.6.8

rv

%

relatieve vochtigheid

2.4

R

m

horizontale afstand van bronpunt naar rekenpunt gemeten langs geluidpad

4

Rtrans

m

afstand van waaraf turbulentie significante invloed heeft op de coherentie van de als lijnbron te beschouwen kogelbaan

4.6.2

R1

m

afstand van de doelpositie naar een punt op de grens van het Mach-gebied dat het dichtst bij het rekenpunt ligt

4.6.2

R2

m

afstand van het rekenpunt tot de grens van het Mach-gebied

4.6.2

sv

m

totale horizontale afstand waarover het geluidpad door een bodemgebied met bodemtype v loopt

4.6.4

t

°C

temperatuur in graden Celsius

2.4

T

K

temperatuur in Kelvin

2.4

u

m/s

horizontale windsnelheid

2.4

v0

m/s

beginsnelheid van de kogel

2.6.2

v1

s-s

verandering van de kogelsnelheid per meter afgelegde kogelbaan: vk = v0 + v1x

2.6.2

ve

m/s

eindsnelheid van de kogel

4.6.2

vk

m/s

snelheid van de kogel

2.6.2

wd,periode

fractie van de tijd dat het in een bepaalde beoordelingsperiode een meteorologische dag is

3.2

wn,periode

fractie van de tijd dat het in een bepaalde beoordelingsperioden een meteorologische nacht is

3.2

x

m

afstand langs de kogelbaan tot de vuurmond

2.6.2

xr

m

x-coordinaat van het rekenpunt

4

xs

m

x-coordinaat van het bronpunt

4

xt

m

lengte van de kogelbaan waar het projectiel een supersone snelheid heeft

4.6.2

yr

m

x-coordinaat van het rekenpunt

4

ys

m

y-coordinaat van het bronpunt

4

z

m

hoogte van een object t.o.v. een referentievlak

4

z0

m

ruwheidslengte van de bodem

2.4

zsch,1

m

hoogte van het scherm t.o.v. het maaiveld

4.6.5

zmax

m

maximale hoogte van geluidstraal

4.6.5

3 Beoordelingsgrootheid

3.1 Toepassingsbereik

De rekenmethode die in dit voorschrift is beschreven, is van toepassing voor de berekening van geluidbelastingen die hoorbaar zijn op het waarneempunt. Als er een kans is dat bepaalde bronnen wegvallen in het achtergrondgeluid, dan worden de impulstoeslag (Pimp=12 dB) en de toeslag voor extra laagfrequente componenten in het geluid (Plf(b,m)) bij de berekening van de geluidbelasting, slechts meegenomen voor zover het geluid waarneembaar is op het immissiepunt. In bijlage A is beschreven hoe de deelbijdrage aan de geluidbelasting (LEs, periode, zie formule 3.1) dan op een alternatieve wijze berekend wordt.

3.2 Geluidbelasting

In eerste instantie wordt per bron en per meteorologische klasse voor een enkel schot de deelbijdrage bepaald aan de geluidbelasting. Mondingsgeluid, kogelgeluid en detonatiegeluid worden, voor zover hier sprake van is, als bijdragen van afzonderlijke bronnen beschouwd. Voor een meteorologische klasse (m = 1, ..., 27) en bron b wordt deze bijdrage gegeven door:

In formule 3.1 is een afhankelijkheid aangegeven van de juridische periode (dag, avond en nacht) waarin een schot wordt afgevuurd. Deze afhankelijkheid is alleen van toepassing als de kans op hoorbaarheid in een periode van invloed is (zie hiervoor bijlage A)

In bovenstaande formule zijn de volgende toeslagen opgenomen:

  • Toeslag Pimpvoor het impulsmatig karakter van schietgeluid:

    Pimp= 12 dB

  • Toeslag Plf voor laagfrequente componenten in het schietgeluid:

    Plf(b,m) = βΔL’(LAE(b,m) – α)

waarin

α = 47 dB β = 0.015 dB-1

en

ΔL = [LCE(b,m) – LAE(b,m)].

Per bron worden vervolgens voor zowel de meteorologische dag als de meteorologische nacht (zie formule 3.2 en 3.3) de deelbijdragen aan de geluidbelasting gemiddeld over alle meteorologische klassen. Dit gemiddelde is een gewogen gemiddelde, de gewichtsfactoren (gd en gn voor respectievelijk de meteorologische dag en nacht) staan beschreven in § 4.4.3. Deze gewichtsfactoren zijn onder andere afhankelijk van de ligging van het rekenpunt ten opzichte van de bron. Hiermede wordt verdisconteerd dat de windroos niet rond is (in Nederland overheersen westelijke windrichtingen). Deze afhankelijkheid wordt beschreven als functie van de hoek θ(b) die de lijn van bron naar rekenpunt maakt met het geografische noorden. Voor de meteorologische dag geldt:

en voor de meteorologische nacht:

Voor de beoordeling van schietgeluid worden drie juridische beoordelingsperioden onderscheiden: dag, avond en nacht (zie § 2.5). De grenzen van deze juridische perioden vallen niet samen met de grenzen van de twee meteorologische perioden: de meteorologische dag en de meteorologische nacht. Hier moet rekening mee gehouden worden bij de berekening van de geluidbelasting voor de drie juridische perioden. Hiertoe wordt gebruik gemaakt van de fracties wd,dag en wn,dag, die aangeven welk gedeelte van de juridische dagperiode (gemiddeld) samenvalt met respectievelijk de meteorologische dag en de meteorologische nacht. Voor de juridische avondperiode worden analoog de fracties wd,avond en wn,avond gebruikt.

Voor de juridische nacht geldt dat deze (gemiddeld) vrijwel volledig binnen de meteorologische nacht valt. De fracties zijn in tabel 3.1 gegeven.

Voor de drie (juridische) beoordelingsperioden wordt voor een bron b de geluidbelasting gegeven door:

waarin

wd,periode weegfactor voor de meteorologische dag (zie tabel 3.1)

wn,periode weegfactor voor de meteorologische nacht (zie tabel 3.1)

Ndag aantal knallen per jaar in de dagperiode (inclusief zon- en feestdagen)

Nzondag,dag aantal knallen per jaar in de dagperiode op zon- en feestdagen

Navond aantal knallen per jaar in de avondperiode

Nnacht aantal knallen per jaar in de nachtperiode

Tabel 3.1: Fracties (wd,periode en wn,periode) van de tijd dat het in de verschillende beoordelingsperioden een meteorologische dag respectievelijk nacht is.

Periode

Meteorologische dag

Meteorologische nacht

dag

wd,dag = 0,80

wn,dag = 0,20

avond

wd,avond = 0,15

wn,avond = 0,85

De totale geluidbelasting voor een bepaalde beoordelingsperiode wordt gegeven door:

Bij deze som worden de afzonderlijke geluidcomponenten van een bron (mondingsgeluid, kogelgeluid en detonatiegeluid en hun reflecties) voor zover deze relevant zijn, als afzonderlijke bronnen beschouwd.

De dag-avond-nachtwaarde wordt bepaald door de geluidbelastingswaarden van de drie beoordelingsperioden energetisch bij elkaar op te tellen, waarbij rekening moet worden gehouden met de duur van de periode:

3.3 Bepaling gemiddelde toeslag voor laagfrequente componenten

Teneinde voor een bepaalde juridische beoordelingsperiode een gemiddelde toeslag voor laagfrequent componenten in het schietgeluid te bepalen, schrijven we de deelbijdrage aan de geluidbelasting voor een bepaalde bron als:

hierin is LAeq,periode (b) het equivalente geluidniveau vanwege schietgeluid voor één bron voor een gemiddelde dag voor een bepaalde juridische beoordelingsperiode en

de bijbehorende laagfrequente toeslag, gemiddeld over alle meteorologische klassen.

Deze grootheden kunnen met onderstaande formules worden bepaald (voor de overzichtelijkheid zijn in de formules de afhankelijkheden van b en m niet weergegeven):

Indien een toeslag ook als gemiddelde over alle bronnen bepaald moet worden dienen onderstaande formules te worden toegepast:

3.4 Incidenteel gebruik

Indien op een schietinrichting op minder dan 30 maar meer dan 12 dagen per jaar wordt geschoten moet op Bs,periode een correctie van 10 lg (30/Pperiode) worden toegepast. Pperiodestaat voor het aantal dagen per jaar dat op de inrichting, onafhankelijk van het wapentype, in een bepaalde juridische beoordelingsperiode wordt geschoten.

De geluidbelasting voor een bepaalde juridische beoordelingsperiode Bs,periode wordt dan bepaald door:

voor 12 < Pperiode < 30

Indien er op 12 of minder dagen in een bepaalde beoordelingsperiode (dag, avond, nacht) geschoten wordt, dan valt dit buiten de algemeen gehanteerde definitie van hinder. Bs wordt dan berekend alsof er in totaal 12 dagen geschoten wordt.

3.5 Salvo's

Omdat bij de meeste machinegeweren de knallen binnen een salvo nog afzonderlijk te horen zijn, is ter bepaling van de geluidbelasting ook bij deze wapens de algemene procedure van toepassing. Er bestaan echter ook wapens waarvan de repeteerfrequentie zo hoog is (meer dan 25 schoten per seconde) dat de knallen niet meer afzonderlijk hoorbaar zijn. Ook dan wordt de geluidbelasting berekend op basis van het totaal aantal verschoten patronen binnen de salvo's.

4 Rekenmethode

4.1 Inleiding

In hoofdstuk 3 is beschreven hoe de hinderrelevante beoordelingsmaat voor schietgeluid, de geluidbelasting Bs, berekend wordt op basis van de A- en C-gewogen geluidexpositieniveaus van alle relevante schietgeluidbronnen, voor een verzameling van 27 meteorologische klassen. De berekening van deze geluidexpositieniveaus wordt in dit hoofdstuk beschreven.

4.2 Toepassingsbereik

Aan het toepassingsbereik van de methode zijn grenzen gesteld, die een gevolg zijn van keuzes, die bij de ontwikkeling van deze methode gemaakt zijn.

Ten aanzien van de afstand tussen bron en rekenpunt is een bovengrens bepaald op 15 km. Voor grotere afstanden is de geluidbelasting van de in Nederland gebruikte wapentypen dermate laag dat berekening niet meer relevant wordt geacht. De gegevensbestanden die vergezeld gaan bij deze methode zijn daarom tot maximaal deze afstand toepasbaar.

De ondergrens in afstand wordt door verschillende factoren bepaald. Uitgangspunt is dat het model toegepast wordt voor de berekening van de geluidbelasting rond schietinrichtingen. Bij de ontwikkeling van het model is er daarom vanuit gegaan dat op afstanden korter dan 50 m van het wapen geen geluidniveaus berekend hoeven te worden. Daarnaast wordt de ondergrens bepaald door de eis dat de rekenmethode alleen kan worden toegepast voor het gebied waar de geluidoverdracht door een lineair model kan worden beschreven. Voor zware wapens ligt de ondergrens hierdoor verder weg dan voor lichte wapens. Tot slot wordt de ondergrens ook bepaald door de afmetingen van een bron. Denk hierbij bijvoorbeeld aan een schermenbaan of een deel van een oefengebied. In deze methode worden deze complexe bronnen door één of meer bronnen gemodelleerd. Deze beschrijving is echter pas op enige afstand geldig.

Ook aan het frequentiebereik zijn grenzen gesteld. De rekenmethode is alleen toepasbaar als de relevante geluidenergie beperkt is tot het frequentiegebied lopend van de 16 Hz tot de 4000 Hz octaafband. Voor de in Nederland toegepaste wapentypen kan hiervan worden uitgegaan. Voor exceptionele gevallen (bijvoorbeeld zware vliegtuigbommen) kunnen nog lagere frequenties een belangrijke rol spelen. De methode is dan niet zondermeer toepasbaar.

Een uitgangspunt van de rekenmethode is ook dat de toestand van de atmosfeer in het gebied tussen bron en rekenpunt niet afhangt van de positie. In de meeste situaties in de praktijk wordt hier in goede benadering aan voldaan, maar er zijn uitzonderingen. Zo kan bijvoorbeeld de meteorologische situatie in het Waddenzeegebied en kustgebieden zeer complex zijn. Door temperatuurverschillen tussen land en water ontstaan zogenaamde zeewindverschijnselen. De windrichting en -snelheid en ook de temperatuur zullen dan van plaats tot plaats anders zijn. De methode is in deze bijzondere situaties niet zondermeer toepasbaar.

In theorie zou men zich een schietoefening kunnen voorstellen waarbij ongebruikelijk hoge geluidniveaus optreden. Het is echter niet nodig om grenswaarden aan het geluidexpositieniveau te stellen, omdat bij toepassing van de beoordelingsmethode onmiddellijk blijkt dat zo’n oefening ook een hoge geluidbelasting geeft.

4.3 Principe van de rekenmethode

Uitgangspunt van de methode is de relatie:

Per rekenpunt wordt per bron (index b), per octaafband (fk) en voor een verzameling van 27 meteorologische klassen (index m) de geluidimmissie volgens deze relatie bepaald. Zowel het geluidimmissieniveau als het bronniveau worden hierbij als geluidexpositieniveau uitgedrukt. Uit het octaafbandspectrum LE(b,m,fk) worden het A-gewogen immissieniveau LAE(b,m) en het C-gewogen immissieniveau LCE(b,m) berekend. Deze niveaus vormen de basis voor de berekening van de hinderrelevante beoordelingsmaat voor schietgeluid, de geluidbelasting Bs, zoals beschreven in hoofdstuk 3.

De dempingstermen die in het model worden gebruikt zijn:

waarin:

Dgeo geometrische demping;

Dlucht(fk) demping t.g.v. luchtabsorptie;

Dbodem(fk, m) demping t.g.v. de bodem;

Dscherm(fk, m) demping door geluidwerende obstakels;

Dnlin extra dempingsterm als gevolg van niet-lineaire geluidoverdracht van kogelgeluid.

Zowel de bodemdemping Dbodem als de schermwerking Dscherm zijn afhankelijk van de meteorologische klasse m. De bodemdemping Dbodem is gedefinieerd als de totale demping in een situatie zonder afschermende objecten, verminderd met Dgeo en Dlucht. Met de term Dscherm wordt de extra demping beschreven ten gevolge van een afschermend object. Hierbij moet worden opgemerkt dat ook de bodemdemping beïnvloed wordt door de aanwezigheid van het afschermende object (namelijk via de effectieve hoogte van de bron of het rekenpunt; zie § 4.6.5). Dscherm is dus niet gelijk aan de tussenschakelverzwakking van het afschermende object.

Dnlin is alleen van toepassing voor de berekening van de geluidbelasting door kogelgeluid.

Reflecties van mondingsgeluid, kogelgeluid en detonatiegeluid worden als afzonderlijke bronnen beschouwd. Er worden hierbij twee soorten reflecties onderscheiden: spiegelreflecties en diffuse reflecties.

Spiegelreflecties treden op aan verticale of bijna verticale vlakken, bijvoorbeeld een muur of een scherm; de hoek tussen het vlak en de verticaal moet kleiner dan 10° zijn, anders wordt de spiegelreflectie niet meegerekend. Spiegelreflecties worden gemodelleerd door middel van spiegelbronnen. Een reflectie aan een vlak draagt alleen aan het immissieniveau bij als een optische spiegeling van de bron naar het rekenpunt via dat vlak mogelijk is. Er wordt hierbij geen rekening gehouden met kromming van geluidstralen. Het bronniveau van een spiegelbron L*Eb is lager dan het bronniveau van de originele bron; het wordt bepaald uit het bronniveau LEb van de originele bron met behulp van onderstaande formule:

waarin LEb het bronniveau (per octaafband) van de originele bron in de richting van het reflectiepunt is en Drefl de reflectiedemping.

Diffuse reflecties treden op aan een bosrand; indien er minder dan drie bomenrijen aanwezig zijn wordt de diffuse reflectie niet meegerekend. Een diffuse reflectie treedt op indien er ‘zicht’ is op de bosrand vanuit zowel de positie van de bron als de positie van het rekenpunt; optische spiegeling is hierbij irrelevant. Diffuse reflecties worden gemodelleerd met behulp van virtuele bronnen. Over het algemeen worden er per diffuus reflecterend vlak verschillende virtuele bronnen onderscheiden, dit in tegenstelling tot spiegelreflecties waarbij een reflectie aan een vlak door één spiegelbron wordt gemodelleerd. De bijdragen van de virtuele bronnen aan het totale geluidniveau op het rekenpunt kunnen als incoherent worden beschouwd, zodat elke virtuele bron als een aparte bron kan worden behandeld. Net als bij spiegelreflecties wordt door middel van een reflectiedemping Drefl rekening gehouden met het feit dat het bronniveau van een virtuele bron lager is dan dat van de originele bron. Ook hierbij wordt gebruik gemaakt van formule 4.3.

Meervoudige reflecties worden verwaarloosd. Er treedt dus maximaal één spiegelreflectie of diffuse reflectie op langs een geluidpad van de bron naar het rekenpunt. Er kunnen wel verschillende geluidpaden met een reflectie optreden.

Voor de berekening van de geluidbelasting wordt gebruik gemaakt van vijf verschillende gegevensbestanden:

  • gegevensbestand met brongegevens en andere bronparameters;

  • gegevensbestand voor het bepalen van de bodemdemping Dbodem;

  • gegevensbestanden voor het bepalen van de statistische gewichten van de 27 meteorologische klassen

In principe wordt voor de berekening van de geluidbelasting van zowel mondingsgeluid, detonatiegeluid als kogelgeluid van dezelfde basisformule (4.1) uitgegaan. Het onderscheid zit hem in de manier waarop de verschillende dempingstermen berekend worden. In de volgende paragrafen worden de verschillende onderdelen van de berekeningsmethode in detail besproken. Waar er verschillen zijn tussen de berekening van mondingsgeluid en kogelgeluid, worden deze per onderdeel behandeld.

Ook voor kogelgeluid wordt de berekening uitgevoerd alsof het geluid van een puntbron afkomstig is. Het opmerkelijke bij kogelgeluid is, dat hierbij de bronniveaus rekentechnisch worden vastgesteld (zie § 4.6.1). Dit in tegenstelling tot mondingsgeluid, waarvan de bronsterkte uit metingen is bepaald. Kenmerkend voor kogelgeluid is daarnaast dat dit alleen in bepaalde gebieden waarneembaar is. Drie gebieden worden onderscheiden waarvoor andere berekeningsmethoden gehanteerd worden. Dit komt onder andere naar voren in de manier waarop de geometrische demping bepaald wordt.

Voor de berekening van de luchtdemping wordt eerst het bronspectrum van het mondingsgeluid (dat uit octaafbanden bestaat), geconverteerd naar een tertsband-bronspectrum. Voor kogelgeluid is deze conversie niet nodig omdat de bronsterkte hiervan al in tertsen bepaald wordt.

Voor de berekening van de afscherming worden drie bijdragen bepaald via verschillende paden; via één verticaal pad en via twee horizontale paden om het scherm heen. Voor de hiervoor genoemde drie brontypen is de berekeningsmethode gelijk, echter voor kogelgeluid zijn de horizontale paden anders gedefinieerd (zie figuur 4.12). Voor de bodemdemping wordt voor mondingsgeluid, detonatiegeluid en kogelgeluid van dezelfde berekeningsmethode uitgegaan met dien verstande dat bij kogelgeluid – indien dit is afgeschermd – de horizontale paden en het verticale pad elk een ander bronpunt kunnen hebben. Tot slot wordt ook voor de berekening van de reflectiebijdrage voor kogelgeluid een aangepaste methode toegepast.

Figuur 4.1: Met de parameters hwapen en Lloop kan de hoogte hs van het bronpunt van de mondingsknal berekend worden voor een gegeven elevatiehoek αe. In deze afbeelding valt het bronpunt samen met de vuurmond, maar in het algemeen kan het bronpunt op enige afstand van de vuurmond liggen. Lloopis dan langer dan de feitelijke lengte van de loop (zie § 4.5.1).

4.4 Toe te passen gegevensbestanden

4.4.1 Gegevensbestand van bronnen

Een gegevensbestand van schietgeluid-bronnen bevat gegevens van een groot aantal wapen-munitie-gebruiksituatie combinaties. Voor elke combinatie bevat het bestand achtereenvolgens de volgende elementen:

  • Richtingsafhankelijke bronniveaus voor de verschillende octaafbanden van het mondings- of detonatiegeluid voor wapen-munitie combinaties, die in Nederland voor een bepaalde gebruikssituatie (vrije veld of bijvoorbeeld op een schermenbaan) worden gebruikt. Een verdere beschrijving wordt onder deze opsomming gegeven.

  • Hoogte van wapen (hwapen) en lengte van de loop (Lloop) in [m] (zie ook figuur 4.1). Deze grootheden zijn hierbij zo gedefinieerd, dat bij een gegeven elevatiehoek αe van de loop van het wapen, de hoogte van het bronpunt boven het plaatselijk maaiveld (hs) bepaald wordt door:

  • Specificatie van de munitie (met bijbehorende aandrijvende lading) of NOV-code van de munitie.

  • Indien het projectiel de loop supersoon verlaat bevat het gegevensbestand bovendien:

    • Lengte van de kogel (lkogel) van punt van kogel tot zijn grootste diameter [mm] (zie figuur 2.1);

    • Maximale diameter van de kogel (dkogel) [mm];

    • Beginsnelheid (v0) van de kogel [m/s];

    • Verandering van de kogelsnelheid (v1) per meter afgelegde weglengte [1/s].

Deze parameters worden gebruikt voor de berekening van het bronniveau van kogelgeluid (zie § 4.6.1). De kogelsnelheid vk op een afstand x van de mond van het wapen wordt gegeven door de relatie:

Voor hand- en vuistvuurwapens kan het aantal wapen-munitiecombinaties dat op een schietbaan wordt gebruikt zo groot zijn dat het een onevenredige inspanning is om voor al deze combinaties de geluidbronsterkte vast te stellen. Hiertoe zijn een aantal standaard categorieën met bijbehorende bronsterkte gedefinieerd, die gebruikt kunnen worden als geen bronsterktemetingen voor de betreffende wapen-munitiecombinatie beschikbaar zijn. Deze categorieën zijn beschreven in rapport ‘Toelichting op toepassing van methoden voor meten en rekenen aan schietgeluid’ (TNO 2014 R10135).

Bronniveau van het mondingsgeluid en detonatiegeluid

Het gegevensbestand bevat octaafbandspectra van het bronniveau van mondingsgeluid en detonatiegeluid, voor een aantal richtingen. De spectra zijn geordend als een matrix LEb(ϕj,f), voor de octaafbanden met middenfrequenties fk = 16 Hz, 31,5 Hz, ..., 4.000 Hz en N hoeken ϕj met j = 1, 2, ..., N. De hoek ϕj is hierbij gedefinieerd als de hoek tussen de lijn van bron naar rekenpunt en de vuurlijn (vanuit de bron met de klok mee gemeten, in een bovenaanzicht). De waarde ϕ = 0° komt dus overeen met de schietrichting. Indien er in het bronnenbestand voor een bepaalde wapen-munitiecombinatie geen bronniveaus opgenomen zijn voor hoeken groter dan 180°, wordt uitgegaan van een symmetrische uitstraling rond de schietrichting. Bronniveaus in richtingen die niet in het gegevensbestand zijn opgenomen worden door interpolatie bepaald.

Indien in het gegevensbestand de bronsterkte alleen voor 0° gegeven is, betekent dit dat deze bron richtingsonafhankelijk is. De gegeven bronsterkte geldt dan voor alle hoeken.

In die gevallen waarbij de schietrichting niet bepaald is (bijvoorbeeld op oefenterreinen) wordt de bron als een richtingsonafhankelijke puntbron gemodelleerd. Het richtingsonafhankelijke spectrum wordt uit het hoekafhankelijke bronspectrum bepaald door een gewogen energetische middeling:

met:

LEb(fk) het energetisch gemiddelde bronniveau

LEb(ϕj,fk) het bronniveau in richting ϕi t.o.v. de schietrichting

N aantal beschikbare hoeken

gj gewichtsfactor

De gewichtsfactor wordt bepaald door:

Interpolatiemethode

Met behulp van de matrix LEb(ϕj,fk) kan het octaafbandspectrum van het bronniveau voor een willekeurige hoek ϕ berekend worden door middel van interpolatie. Hiervoor wordt de zogenaamde cubic spline interpolatiemethode gebruikt. De methode is hieronder beschreven voor een willekeurige octaafband. Er is hierbij uitgegaan van een symmetrische geluidemissie. Voor het gemak is het argument fk in LEb(ϕj,fk) weggelaten. Drie gevallen worden onderscheiden:

  • 0° ≤ ϕ < ϕ1;

  • ϕN < ϕ ≤ 180°;

  • ϕj < ϕ < ϕj+1 voor een index j < N.

In de eerste twee gevallen is interpolatie niet mogelijk. De bronsterkte wordt dan bepaald door:

In het derde geval wordt de bronsterkte bepaald door:

met

L"Eb(ϕj) is de tweede-orde afgeleide van de functie LEb(ϕ) voor ϕ = ϕj. Voor j=1 tot N zijn deze waarden in het gegevensbestand opgenomen.

4.4.2 Gegegevensbestand voor bepaling bodemdemping

Het gegevensbestand voor de bepaling van de bodemdemping bevat resultaten van berekeningen met een numeriek rekenmodel voor geluidoverdracht, het Parabolic-Equation model (PE model). Het betreft berekeningen van de bodemdemping voor de 27 meteorologische klassen exclusief geometrische demping en luchtdemping. De berekeningsresultaten zijn gegeven als coëfficiënten van een twintigste-orde polynoom. De bodemdemping voor een specifieke situatie wordt bepaald door:

waarin:

ci coëfficiënten van twintigste-orde polynoom;

R horizontale afstand van bronpunt naar rekenpunt.

De 21 coëfficiënten van de polynoom zijn in het bestand gegeven voor:

  • 27 meteorologische klassen;

  • 3 waarden voor de akoestische bodemhardheid (reflecterend, absorberend en zeer absorberend);

  • 12 hoogten van rekenpunten (0.1; 0.5; 1; 1.5; 2; 3; 4; 5; 6; 8; 10 en 15 m);

  • 16 bronhoogten (0.1; 0.5; 1; 1.5; 2; 3; 4; 5; 6; 8; 10; 15; 20; 30; 40 en 50 m);

  • 9 octaafbanden (16 Hz t/m 4.000 Hz).

Totaal bevat dit bestand derhalve 21×27×3×12×16×9= 2.939.328 coëfficiënten.

Meteorologische klassen

In deze methode worden 27 meteorologische klassen onderscheiden. Een klasse wordt gerepresenteerd door een functie, die de geluidsnelheid beschrijft als functie van de hoogte; het zogenaamde geluidsnelheidsprofiel. Deze profielen zijn in drie groepen onderverdeeld:

waarin:

cn(h) geluidsnelheidsprofiel;

h hoogte t.o.v. plaatselijk maaiveld;

h 0 referentiehoogte h0= 0.1 m;

c 10 geluidsnelheid bij 10° C en 1 atmosfeer (zie § 2.10);

bn parameter van het geluidsnelheidsprofiel zie tabel 4.1.

Tabel 4.1: Waarden van de parameters bn(in m/s) uit de formules (4.9). Tegenwind en neutrale situaties zijn vet gemarkeerd.

Groep 1

b1= 10

b2=3

b3= 1

b4= -1

b5= -3

b6= -6

b7= -10

Groep 2

b8= -1

b9= -0.4

b10= -0.2

b11= 0

b12= 0.2

b13= 0.4

b14= 0.7

b15= 1.1

b16=1.5

b17= 2

b18= 2.5

Groep 3

b19= -1

b20= -0.5

b21= -0.2

b22= 0.2

b23= 0.4

b24= 0.65

b25= 1

b26= 1.4

b27= 2

Formule (4.8) is vanaf 15 m tot een bepaalde maximum afstand geldig. De minimale en maximale afstand zijn in het gegevensbestand opgenomen. Voor afstanden groter dan de maximale afstand wordt de waarde op de maximale afstand genomen. Voor afstanden kleiner dan 15 m kan formule 4.8 niet worden toegepast. Indien echter het geluidpad over verschillende bodemtypen loopt kan het voorkomen dat een bronpunt op korte afstand van een bodemovergang ligt en over een afstand kleiner dan 15 m de bodemdemping bepaald moet worden (zie ook § 4.6.4).

In dat geval moet gebruik gemaakt worden van onderstaande interpolatieformule:

Interpolatie en extrapolatie

Het gegevensbestand is gevuld voor een gekozen verzameling van combinaties van hoogtes van het bron- en rekenpunt. Deze verzameling kan worden uitgebreid met de reciproque combinaties. Het reciprociteitsprincipe houdt in dat de waarde van de bodemdemping niet verandert als bron- en rekenpunt worden omgewisseld. In formule:

Figuur 4.2a: Overzicht van combinaties van bronhoogte en hoogte van het rekenpunt die in het gegevensbestand zijn opgenomen of die door toepassing van het reciprociteitsprincipe kunnen worden verkregen.

Indien een combinatie van bron en rekenpunt binnen het grijs gemarkeerde gebied van figuur 4.2a ligt maar niet in het gegevensbestand voorkomt en ook niet als reciproque combinatie bestaat, zal voor deze combinatie de bodemdemping door interpolatie bepaald moeten worden. Hiervoor worden die vier punten gebruikt, die op de hoekpunten liggen van een rechthoek rond het te interpoleren punt [hs,hr] (zie figuur 4.2.b). De overdracht voor de gewenste combinatie van bronhoogte en hoogte van het rekenpunt wordt vervolgens gegeven door:

met

waarin:

hs hoogte bronpunt boven plaatselijk maaiveld;

hr hoogte rekenpunt boven plaatselijk maaiveld;

hs,k, hr,n hoogte van bronpunt resp. rekenpunt voor (k,n) = (1,1), (1,2), (2,1), en (2,2) waarvan de combinatie wel in het gegevensbestand is opgenomen (zie figuur 4.2b).

Figuur 4.2b: Detail van figuur 4.2a. Aangegeven is hoe de geluidoverdracht door interpolatie bepaald kan worden.

Als een combinatie niet binnen het grijs gemarkeerde gebied van figuur 4.2a ligt dient de bodemdemping door extrapolatie te worden bepaald met behulp van onderstaande relatie:

Indien de hoogte van de bron of van het rekenpunt kleiner is dan 0,1 m moet 0,1 m aangehouden worden. Voor hoogten groter dan 50 m heeft dit gegevensbestand geen geldigheid meer.

4.4.3 Gegevensbestand met statistische gewichten

Een statistisch gewicht geeft de kans aan dat een meteorologische situatie van een klasse m voorkomt. Deze kans hangt van verschillende factoren af. Zo is de kans afhankelijk van het dagdeel (meteorologische dag of meteorologische nacht) respectievelijk aangegeven met het symbool gd(m,θ) en gn(m,θ). De kans is bovendien afhankelijk van de hoek θ die de lijn van bron naar rekenpunt maakt met het geografische noorden en tot slot ook van de gemiddelde bodemruwheid onder het geluidpad (zie ook § 4.6.7 en § 4.6.8).

Een maat voor de bodemruwheid is de ruwheidslengte z0. In tabel 4.2 zijn de ruwheidslengtes gegeven waarvoor de statistische gewichten bepaald zijn.

Tabel 4.2: Ruwheidslengtes z0 waarvoor in het gegevensbestand statistische gewichtsfactoren zijn opgenomen.

1

2

3

4

5

6

7

8

9

10

z0 (cm)

0.02

0,1

0,5

1,2

3

6

10

15

20

25

De gemiddelde ruwheid van de bodem wordt bepaald als gewogen gemiddelde van de ruwheidslengtes van de gebieden langs het geluidpad.

waarin (zie ook figuur 4.3):

z0,j ruwheidslengte van doorlopen deelgebied j;

rmin,j kortste horizontale afstand van bron tot grens deelgebied langs geluidpad;

rmax,j grootste horizontale afstand van bron tot grens deelgebied langs geluidpad;

r horizontale afstand van bron naar rekenpunt langs geluidpad;

N aantal door het geluidpad doorsneden deelgebieden.

Figuur 4.3: Definitie van grenzen van ruwheidsgebieden bij bepaling van de gemiddelde ruwheid.

In het gegevensbestand statgew.bin zijn voor 10 verschillende waarden van de ruwheid (zie tabel 4.2), voor 60 verschillende hoeken (in stappen van 6°) en voor de 27 meteorologische klassen de statistische gewichten gegeven voor de meteorologische dag en de nacht. Voor waarden van de ruwheid waarvoor in het gegevensbestand geen gewicht is opgenomen wordt het gewicht van de dichtstbijgelegen ruwheidswaarde gebruikt. Voor waarden van de hoek waarvoor geen gewicht is opgenomen wordt een geïnterpoleerde waarde berekend conform onderstaande formule:

waarin θ1 en θ2 de dichtstbijgelegen hoeken zijn. Dit gegevensbestand bevat hiervoor 27x2x10x60 = 32.400 verschillende statistische gewichten.

In het bovenstaande gegevensbestand hebben een aantal statistische gewichten een waarde gelijk aan nul of relatief een lage waarde (<0.01). De bijdrage voor deze profielen zal gering zijn. Eventueel kunnen deze bijdragen toegeschreven worden aan profiel 18 om zo de berekeningen te vereenvoudigenen. Het statistisch gewicht van de profielen met een kleine bijdragen dient dan bij het statisch gewicht van profiel 18 te worden opgeteld zodat de som van de gewichten weer gelijk aan 1 is.

Voor het geval dat het gebruik van de schietinrichting gekoppeld is aan de heersende windrichting wordt een aangepaste procedure gebruikt. In dit geval is er een zogenaamde windroossector gedefinieerd waarmee een gedeelte van de windroos wordt aangegeven waarbij schietactiviteiten op de betreffende inrichting kunnen plaatsvinden. Deze windroossector wordt door twee parameters bepaald, die de grootte en positie van de sector aangeven (zie § 2.4 en Figuur 4.4). De statistische gewichten zijn van deze twee parameters afhankelijk naast de hiervoor genoemde grootheden (meteorologische klasse, dagdeel, hoek van bron naar rekenpunt met geografisch noorden en de gemiddelde ruwheid onder het geluidpad). Omdat het teveel opslagruimte zou vragen om voor alle mogelijke combinaties van al deze parameters de gewichten te geven is een rekenprocedure ontwikkeld waarmee de gewichten op eenvoudige wijze kunnen worden bepaald.

Voor de berekening wordt gebruik gemaakt van twee gegevensbestanden (statmet.bin en metprof.bin). In het eerste bestand wordt de kans gegeven dat een bepaalde combinatie van windsnelheid, windrichting en bewolkingsgraad voorkomt. Voor de meteorologische dag zijn deze kansen als seizoensgemiddelde gegeven (dus achtereenvolgens voor de lente, zomer, herfst en de winter), voor de meteorologische nacht wordt een jaargemiddelde waarde gebruikt. Met het tweede bestand kan bepaald worden bij welke omstandigheden welke meteorologische klasse hoort.

Het is een groot bestand waarin de meteorologische klasse gegeven wordt als functie van:

gemiddelde ruwheid onder het geluidpad (voor 10 ruwheden zie Tabel 4.2);

geluidvoortplantingsrichting (voor 0° tot 354° in stappen van 6°);

windsnelheid (voor 15 klassen);

windrichting (voor 0° tot 354° in stappen van 6°);

bewolkingsgraad (voor 9 klassen);

seizoen (voor de meteorologische dag voor 4 seizoenen; voor de meteorologische nacht is een jaargemiddelde gegeven)

De berekening van een statistisch gewicht verloopt dan als volgt: eerst wordt bepaald welke gedigitaliseerde waarden van de windrichting (lopend van 0° tot 354° in stappen van 6°) binnen de windroossector liggen. Vervolgens wordt de dichtstbijgelegen ruwheidswaarde uit tabel 4.2 gekozen, die overeenkomt met de gemiddelde ruwheidswaarde onder het geluidpad (zie formule 4.14). Voor deze waarden wordt in bestand metprof.bin gezocht naar alle combinaties van windsnelheid, windrichting, bewolkingsgraad en – voor de meteorologische dag – seizoen, die bij één van de 27 meteorologische klassen horen. Met behulp van het bestand statmet kan de kans bepaald worden dat een dergelijke combinatie optreedt. Per meteorologische klasse worden de kansen gesommeerd van al de combinaties, die bij die klasse horen. Uit de zo verkregen waarden (27 voor de meteorologische dag en 27 voor de meteorologische nacht) worden tenslotte de statistische gewichten bepaald door deze 27 waarden te normeren met hun som voor respectievelijk de dag en de nacht zodat geldt:

Figuur 4.4: Een windroossector [χ, ζ] betekent dat alleen windrichtingen

ζ ± χ/2 relevant zijn (de groene sector in de figuur). Dit voorbeeld toont een windroossector [90°, 270°], waarbij alleen windrichtingen tussen noordwest en zuidwest relevant zijn. De hoek θ, die de lijn van bron- naar rekenpunt maakt met het geografische noorden, is ook aangegeven.

Indien de geluidvoortplantingsrichting niet gelijk is aan een veelvoud van 6° tussen 0° en 354° dan wordt bovenstaande procedure uitgevoerd voor de twee dichtstbijgelegen waarden voor de richting. Het uiteindelijk gewicht wordt vervolgens (vergelijkbaar zoals dit hiervoor is aangegeven) door lineaire interpolatie bepaald.

4.5 Invoergrootheden rekenmethode

4.5.1 Brongegevens

Mondingsgeluid

Voor de berekening van de geluidbelasting van het mondingsgeluid moeten van elke wapen-munitiecombinatie de volgende geometrische parameters bekend zijn:

  • (xs,ys,hwapen) wapenpositie, waarbij hwapen de hoogte van het wapen is ten opzichte van het plaatselijke maaiveld;

  • αe elevatie van wapen;

  • ψ schietrichting t.o.v. het noorden in het horizontale vlak.

De bronnen van het mondingsgeluid worden gerepresenteerd als puntbronnen. De positie van de puntbron ligt voor lichte wapens aan het uiteinde van de loop, voor zwaardere wapens ligt dit punt op enige afstand van de vuurmond in het verlengde van de loop. In het gegevensbestand van bronnen is hiermee rekening gehouden door de looplengte te definiëren als de afstand van het draaipunt tot aan het bronpunt. De bronpositie kan zo met behulp van eenvoudige geometrische formules uit bovenstaande gegevens berekend worden (zie formule 4.4).

Militaire oefenterreinen

Bij militaire oefenterreinen zijn de exacte bronposities vaak onbekend. Wel kan een gebied aangegeven worden waar mogelijk geschoten wordt. Voor de modellering van een oefenterrein worden daarom gebieden geselecteerd waarbinnen aangenomen kan worden dat de kans dat op een mogelijke positie geschoten wordt uniform over dit gebied verdeeld is en waarbij elke schietrichting even waarschijnlijk is. Er is hierbij vanuit gegaan dat alleen met losse patronen wordt geschoten. Indien niet aan deze voorwaarden wordt voldaan, zal van de exacte bronpositie uit moeten worden gegaan.

Voor de modellering van een oefenterrein verdient het aanbeveling van een referentie-oefening uit te gaan. De volgende benaderingen zijn daarbij gebruikelijk om de geluidbelasting door schieten en knallen te beschrijven:

  • 1.

    Er wordt een referentieoefening gedefinieerd. Deze bestaat uit diverse oefensituaties die aan een gebied worden gekoppeld. Bijvoorbeeld: ‘Patrouille zuivert bosgebied in dagperiode’.

  • 2.

    Het aantal knallen per munitiesoort en wapentype wordt uniform verdeeld gedacht over de diverse gebieden waarin deze oefening voorkomt, tenzij uitdrukkelijk anders aangegeven.

  • 3.

    Indien niet uitdrukkelijk anders wordt aangegeven, wordt uitgegaan van de energetisch gemiddelde bronsterkte per wapentype over alle (horizontale) richtingen (zie formule 4.6). In het bijzonder geldt dit voor gevallen waarin een aanvallende en verdedigende partij is.

  • 4.

    In § 4.6.1 is aangegeven hoe de gebieden moeten worden opgedeeld ten behoeve van de overdrachtsberekening.

  • 5.

    Omdat er met losse patronen of simulatoren wordt geoefend, speelt kogelgeluid geen rol.

Kogelgeluid

Uit het bronnenbestand kan gelezen worden of voor een wapen-munitiecombinatie de startsnelheid van het te verschieten projectiel supersoon is. In dit geval kan kogelgeluid van belang zijn. Voor lichte wapentypen wordt er voor de berekening vanuit gegaan dat de kogelbaan evenwijdig aan de bodem loopt. De elevatie is voor deze wapentypen dus 0°.

Kogelgeluid van de zwaardere wapentypen waarvan het projectiel een kromme baan beschrijft (het zogenaamde krombaangeschut; Houwitser en mortier) moet op een andere wijze worden berekend. Voor de berekening van het kogelgeluid dient dan rekening te worden gehouden met de sterk variërende hoogte van de kogel.

Voor banen waarvan gebruik gemaakt wordt van een vervangende puntbron, zie hieronder, wordt de bijdrage van zowel mondingsgeluid als kogelgeluid verdisconteerd. Kogelgeluid wordt dan niet apart berekend.

Bij hagelgeweren wordt eventueel kogelgeluid verdisconteerd in de bronsterkte van het mondingsgeluid.

Detonatiegeluid

Ook het detonatiegeluid wordt in de rekenmethode als een puntbron gekarakteriseerd. De hoogte van deze puntbron is afhankelijk van de hoogte van detonatie. Bij een brisantgranaat is het moment (en dus de hoogte) van detonatie afhankelijk van het type ontstekingsbuis dat op een granaat is aangebracht. Dit kan variëren van 10 m hoogte tot in de grond. Indien de detonatie in of op de grond plaatsvindt, wordt voor de berekening een hoogte van 0,5 m+ maaiveld aangehouden.

Schietbanen (zoals bijvoorbeeld schermenschietbanen)

In die gevallen waarbij het wapen op korte afstand deels of geheel omsloten is door afschermende en/of reflecterende objecten, kan in principe niet van brongegevens worden uitgegaan, die voor het vrije veld zijn bepaald. Het geluidveld rond de bron is dermate complex dat het gebruik van rekenmodellen, die vanaf de bron rekenen, beperkt mogelijk is. Voor deze gevallen wordt de situatie van de bron met de omringende afschermende en/of reflecterende objecten gemodelleerd door één of meer vervangende puntbronnen. De bronsterkte van deze vervangende puntbron(nen) zal door middel van metingen moeten worden vastgesteld. In het rapport ‘Toelichting op toepassing van methoden voor meten en rekenen aan schietgeluid’ (TNO 2014 R10135) wordt een beschrijving van de meetmethode gegeven. Indien geen meetgegevens voorhanden zijn of te verkrijgen zijn, wordt in dit rapport ook een conservatieve inschatting gegeven voor een vervangende puntbron op basis van de vrije-veld bronsterkte. In sommige gevallen kan het gewenst zijn dat de bronsterkte van dergelijke schietbanen door middel van berekeningen wordt vastgesteld, bijvoorbeeld voor nog niet bestaande schietbanen. Per situatie moet een rekenmodel op zijn geschiktheid worden beoordeeld, een algemeen toepasbaar model is vooralsnog niet te geven.

Voor de modellering van een schietbaan (zoals bijvoorbeeld een kleiduivenschietbaan) verdient het aanbeveling van een standaard gebruiksituatie uit te gaan. In het eerder genoemde rapport (TNO 2014 R10135) wordt voor een aantal type banen aangegeven hoe deze gemodelleerd dienen te worden om de geluidbelasting te berekenen.

4.5.2 Bodemtype (hardheid/ruwheid)

In het model worden vier verschillende bodemtypen onderscheiden (zie tabel 4.3). Elk type correspondeert met een andere combinatie van bodemhardheid en bodemruwheid (zie voor definities van deze begrippen § 2.6)

Tabel 4.3. De vier bodemtypen in het rekenmodel voor schietgeluid, met vier verschillende combinaties van de stromingsweerstand σ en de ruwheidslengte z0.

Bodemtype

voorbeelden

σ (Nsm-4)

zo (m)

1. glad en reflecterend

water, beton

0.0002

2. ruw en absorberend

grasland

3.105

0.03

3. ruw en zeer absorberend

zandbodem

1.105

0.03

4. zeer ruw en zeer absorberend

heide, bouwland

1.105

0.25

Om het bodemtype van een terrein te bepalen moeten eerst de eigenschappen van terrein worden ingeschat. De volgende uitgangspunten moeten hierbij in acht worden genomen:

  • 1.

    De keuze tussen ruw en zeer ruw.

    Het verschil tussen ruw en zeer ruw zit in de begroeiing van de oppervlakte.

    Een ruw terrein bevat lage begroeiing (zoals gras), een zeer ruw terrein bevat hogere begroeiing (zoals heide of lage gewassen). Verspreide obstakels (bomen, huizen) worden hierbij buiten beschouwing gelaten.

  • 2.

    De keuze tussen absorberend en zeer absorberend.

    Een bodem wordt absorberend genoemd als de stromingsweerstand groter is dan 2.105 Nsm-4, en zeer absorberend als de stromingsweerstand kleiner is dan 2.105 Nsm-4. Dit betekent in de praktijk dat grasland absorberend is en dat ruwere bodems zoals heide zeer absorberend zijn.

  • 3.

    Voor bossen en steden moet bodemtype 4 worden gekozen.

Indien in het overdrachtspad van bron naar rekenpunt verschillende bodemtypen voorkomen, dienen ze ook als zodanig te worden onderscheiden. In § 4.6.4 wordt hier nader op ingegaan.

4.5.3 Afschermende objecten

Een object moet aan de volgende eisen voldoen om als afschermend object in rekening te worden gebracht:

  • De massa per eenheid van oppervlakte dient tenminste 10 kg/m2 te bedragen.

  • Het object mag geen grote kieren of openingen bevatten. Procesinstallaties, bomen e.d. worden dus niet als een afschermend object in rekening gebracht.

  • Het object wordt vanuit de bron of vanuit het rekenpunt gezien onder een hoek van tenminste 5° in het horizontale vlak.

Grote objecten, zoals heuvels en eventueel duinen waarbij het terrein een hellingspercentage kent van minder dan 20%, worden niet als afschermende objecten ingevoerd. Deze kunnen in rekening gebracht worden door een variatie in de maaiveldhoogte van de bodemvlakken.

Drie verschillende afschermende objecten worden onderscheiden:

  • scherm;

  • wal;

  • gebouw.

Een scherm en een wal worden geschematiseerd door een verticaal vlak of keten van verticale vlakken, die onder een hoek met elkaar staan, waarbij er vanuit wordt gegaan dat de bovenrand horizontaal loopt. Bij een wal wordt de positie van het vlak op het snijpunt gekozen van het voor- en achtervlak van de wal. Voor de berekening moet de hoogte bekend zijn, voor een wal moet bovendien de tophoek opgegeven worden. De definitie van de tophoek is in onderstaande figuren gegeven. Indien een scherm op een wal zo laag is dat de gestippelde lijnen in fig 4.5b het talud snijden, wordt de grootte van de tophoek bepaald zoals dit in figuur 4.5a is weergegeven.

Figuur 4.5a: Tophoek γ van wal met platte top.

Figuur 4.5b: Tophoek γ van wal met scherm

Bij een wal is de absorptiecoëfficiënt van het materiaal waaruit het is opgebouwd van belang voor de berekening van de tophoekcorrectie (formule 4.50). Enkele typerende waarden van de absorptiecoëfficiënt zijn voor verschillende materialen in tabel 4.4 aangegeven.

Gebouwen worden geschematiseerd als een keten van verticale vlakken van dezelfde hoogte, waarbij het eerste vlak weer aan het laatste vlak aansluit. Er wordt verondersteld dat de hoogte van al deze vlakken gelijk is.

4.5.4 Reflecterende objecten

Er worden twee typen reflecties onderscheiden: Spiegelreflecties en diffuse reflecties. Voor een spiegelreflectie geldt dat de hoek van inval van het geluid gelijk is aan de hoek die het gereflecteerde geluid maakt met het spiegelende object, vergelijkbaar met een optische spiegeling. Bij diffuse reflecties wordt het invallende geluid diffuus verstrooid.

Spiegelende objecten

Twee verschillende spiegelende objecten worden onderscheiden:

  • scherm;

  • gebouw.

Een object moet aan de volgende eisen voldoen om als spiegelend reflecterend object in rekening te worden gebracht:

  • Het object heeft een min of meer vlakke en geluidreflecterende wand;

  • De reflecterende wand moet een dichtheid hebben groter dan 10 kg/m2;

  • De hoek tussen de geluidreflecterende wand en de verticaal moet kleiner zijn dan 10°.

De spiegelende objecten worden op dezelfde manier geschematiseerd als de overeenkomstige afschermende objecten. Van een reflecterend vlak moet daarnaast ook de reflectiviteit (0 ≥ ρ ≥ 1) gegeven worden. De reflectiviteit ρ is de reflectiecoëfficiënt voor de geluidenergie en wordt bepaald door de absorptiecoëfficiënt αabs van het materiaal waaruit het reflecterende vlak bestaat:

ρ = 1abs. In het algemeen is ρ een functie van de frequentie. Enkele typerende waarden van de absorptiecoëfficiënt zijn voor verschillende materialen in tabel 4.4 aangegeven.

Tabel 4.4. Typische waarden voor absorptiecoëfficiënten voor verschillende materialen.

Materiaal

Geluidabsorptiecoëfficiënt, in oktaafbanden

16

31.5

63

125

250

500

1000

2000

4000

Bakstenen muur

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.1

0.1

Dichte betonblokken (pleister, verf)

0.0

0.0

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Poreuze betonblokken

0.0

0.1

0.2

0.4

0.4

0.3

0.3

0.4

0.3

Glazen wand

0.1

0.2

0.3

0.4

0.3

0.2

0.1

0.1

0.0

Houten wand

0.0

0.1

0.2

0.3

0.2

0.2

0.1

0.1

0.1

Aarde en zand, glad

0.0

0.0

0.0

0.1

0.1

0.1

0.2

0.4

0.5

Aarde, ruw

0.0

0.0

0.1

0.2

03

0.4

0.6

0.6

0.6

Grind, los en vochtig, (laag van 10cm)

0.0

0.1

0.2

0.3

0.6

0.7

0.7

0.8

0.8

Gras

0.0

0.0

0.1

0.1

0.2

0.3

0.4

06

0.7

Diffuus reflecterende objecten

Diffuse reflecties treden op aan een bosrand; minimaal moeten er drie bomenrijen aanwezig zijn voordat een diffuse reflectie in rekening wordt gebracht. Een bosrand wordt geschematiseerd door een verticaal vlak of keten van verticale vlakken, die onder een hoek met elkaar staan, waarbij er vanuit wordt gegaan dat de bovenrand horizontaal loopt. Op de plaats van de vlakken wordt een rij equidistante cilinders gedacht. De afstand tussen de cilinders deff bedraagt de helft van de gemiddelde afstand tussen naburige bomen van de eerste drie bomenrijen van de bosrand. Deze gemiddelde afstand wordt benaderd door 1/√n2, waarbij n2 het gemiddelde aantal bomen per oppervlakte-eenheid is. De straal van de cilinders rcil is gelijk aan de gemiddelde straal van de bomen. Indicatieve waarden voor een gemiddeld bos zijn deff = 1,4 m en rcil = 0,1 m. De hoogte van de bosrand wordt bepaald door de gemiddelde hoogte van de bomen in de bosrand.

4.5.5 Keuze van rekenpunten

Voor planningsdoeleinden zijn vaak contouren gewenst. Een geluidcontour is een lijn die punten met een gelijke geluidbelasting verbindt. Een geluidcontour kan verkregen worden door lineaire interpolatie tussen rekenpunten op een rekenrooster. Een rekenrooster is een verzameling van punten, die op regelmatige afstand (d*) van elkaar liggen. Aan de interpolatie zijn een aantal voorwaarden verbonden:

  • het verschil in geluidniveau tussen de punten dient minder dan 3 dB te bedragen;

  • de afstand tussen het geïnterpoleerde punt en het dichtstbijzijnde bronpunt dient groter te zijn dan de afstand tussen de punten waartussen wordt geïnterpoleerd.

In de meeste gevallen zal bij een afstand van d* = 250 m aan bovenstaande criteria voldaan worden. Indien niet aan bovenstaande voorwaarden wordt voldaan, zal het rooster lokaal verdicht moeten worden. Een verdere verdichting dan tot d* = 50 m is niet noodzakelijk.

Hoogte rekenpunt

Als er sprake is van zonering rondom schietinrichtingen of -terreinen, heeft een hoogte van 5 m de voorkeur. Voor beoordelingspunten bij vergunningsituaties wordt over het algemeen voor de dagperiode een hoogte van 1,5 m en voor de avond- en nachtperiode een hoogte van 5 m aangehouden. Uitgangspunt is dat de berekeningshoogte bepaald wordt door de hoogte waarop mogelijke hinder te verwachten is.

4.6 Berekening van het geluidexpositieniveau

4.6.1 Bronniveau

Mondingsgeluid en detonatiegeluid

Voor geluid anders dan kogelgeluid wordt het bronniveau over het algemeen betrokken uit het gegevensbestand. Zie hiervoor § 4.4.1 en § 4.5.1. De emissie van het mondingsgeluid is over het algemeen richtingsafhankelijk. Van belang hierbij is de hoek φ tussen de vuurlijn en de lijn van bron naar rekenpunt. Deze hoek is afhankelijk van de elevatie van het wapen volgens onderstaande formule:

ϕ = acos(cosαe cosφp)

waarin:

ϕp geprojecteerde hoek ϕ op een horizontaal vlak.

Bij de berekening van de emissiehoek φ wordt geen rekening gehouden met hoogteverschillen tussen bronpunt en rekenpunt (benadering voor het verre veld).

Brongebieden

Brongebieden zijn gebieden waarbinnen een mogelijke schietpositie uniform over het gebied is verdeeld. Om de geluidbelasting van een dergelijke brongebied te berekenen, dient dit in zodanig kleine deelgebieden te worden opgedeeld dat voor een deelgebied van een puntbron kan worden uitgegaan.

In een eerste stap wordt, afhankelijk van de kleinste en grootste afstand van het rekenpunt tot de grenzen van het brongebied (respectievelijk dmin en dmax), de breedte bepaald van schillen die in concentrische cirkels rond het rekenpunt liggen. Voor de breedte Ln van deze schillen geldt:

voor n = 1 t/m N

waarin N, uitgedrukt als een naar boven afgerond geheel getal, wordt gegeven door:

Figuur 4.6: Voorbeeld van een beschrijving van een deelgebied door deelbronnen voor twee verschillende rekenpunten (o).

Vervolgens worden deze schillen onderverdeeld in sectoren met een hoek van 30°. De snijpunten van de concentrische cirkels met de sector begrenzingen geven de hoekpunten van trapezia. De overlap van deze trapezia met het brongebied geven uiteindelijk de grenzen van de verschillende deelgebieden. De vervangende deelbronnen liggen op het geometrische zwaartepunt van deze deelgebieden.

In figuur 4.6 is een voorbeeld gegeven van de verdeling van de bronpunten voor twee verschillende rekenpunten.

De bijdragen van de verschillende deelbronnen tot de geluidbelasting in de verschillende juridische beoordelingsperioden (Bs,dag(bi), Bs,avond(bi) en Bs,nacht(bi)) moeten tenslotte gecorrigeerd worden voor het verschil in oppervlak tussen de verschillende deeloppervlakken Oien het totale oppervlak van het brongebied Otot. Hiertoe wordt in formule 3.4 in het rechterlid een correctieterm toegevoegd zoals hieronder in formule 4.18 is weergegeven:

Kogelgeluid bij vlakbaan schieten

Voor de berekening van de geluidbelasting door kogelgeluid wordt ervan uitgegaan dat het kogelgeluid van één punt afkomt dat op de kogelbaan ligt, het zogenaamde bronpunt. Uitgaande van een xy-coördinatenstelsel in het horizontale vlak, met de vuurmond in de oorsprong, de x-as langs de vuurlijn en de y-as loodrecht hierop, wordt de positie van het bronpunt aangegeven als (xs,0) en de positie van het rekenpunt als (xr,yr). De onbekende xs wordt bepaald door het oplossen van onderstaande vierde orde polynoom:

waarin:

(xr, yr) positie van rekenpunt;

(xs, 0) positie van het bronpunt.

Voor de oplossing van deze polynoom wordt verwezen naar mathematische handboeken. Indien het bronpunt achter het doel ligt, wordt voor het bronpunt de doelpositie genomen. Indien het bronpunt op een punt ligt waar de kogelsnelheid kleiner is dan 1,02c0 dan wordt voor het bronpunt het punt genomen waar de kogelsnelheid gelijk is aan 1,02c0 (ervan uitgaande dat v0 groter is dan 1,02c0).

Het breedbandige bronniveau wordt bepaald door de afmetingen van de kogel en zijn lokale snelheid op het bronpunt:

met M het Mach-getal van de kogel op het bronpunt en waarbij dkogel en lkogel uitgedrukt worden in m.

Voor de berekening van het octaafbandspectrum van het bronniveau wordt rekening gehouden met de verschuiving van het spectrum van kogelgeluid op het traject van het bronpunt naar het rekenpunt (door niet-lineaire effecten). Hiervoor wordt een karakteristieke frequentie fkogel van kogelgeluid geïntroduceerd, die afhankelijk is van de afstand R van het bronpunt op de kogelbaan naar het rekenpunt:

Omdat het tertsbandspectrum wordt gebruikt bij de berekening van de luchtdemping (zie § 4.6.3) wordt het bronniveau in tertsen bepaald. Hierbij wordt uitgegaan van de drie tertsbanden binnen de octaven met middenfrequenties fk van 16 Hz tot en met 4 kHz. Het bronspectrum in tertsen wordt bepaald volgens de formule:

waarin:

met:

fk,j nominale middenfrequentie van je tertsband van ke octaafband

Voor de berekeningen van de overige dempingstermen wordt van een bronspectrum in octaven uitgegaan:

Kogelgeluid bij krombaan schieten

In het algemeen is het kogelgeluid bij krombaan schieten niet van belang. Door de hoge elevatiehoek waaronder geschoten wordt en de verhoudingsgewijs lage uittreesnelheid van het projectiel in vergelijking tot lichte vuurwapens, treedt kogelgeluid alleen in een klein gebied voor het wapen op. Dit gebied ligt dus in het mal onveilige gebied (mog) van het wapen en is daarom voor de berekening van de geluidbelasting in woongebieden niet van belang.

Echter, in speciale gevallen waarbij de elevatiehoek lager ligt en de uittreesnelheid verhoudingsgewijs groot is, is het kogelgeluid wel van belang. In deze gevallen moet voor de berekening van de geluidbelasting door kogelgeluid een daarvoor geschikte methode worden gebruikt.

4.6.2 Geometrische demping

Puntbronnen

Bij de modellering van puntbronnen is uitgegaan van sferische geluiduitbreiding over een hele bol. Voor de geometrische demping geldt dan:

Kogelgeluid

Voor de berekening van de geometrische demping van kogelgeluid worden drie gebieden onderscheiden (zie figuur 2.2): gebied I achter het wapen, gebied II dat ook als Mach-gebied wordt aangeduid, en gebied III achter het doel. De grenzen tussen de gebieden worden bepaald door de hoeken ξb en ξe, die afhankelijk zijn van de beginsnelheid v0 respectievelijk de eindsnelheid ve van de kogel (ve is dus de kogelsnelheid bij het treffen van het doel):

Indien de snelheid van de kogel voor het treffen van het doel onder de geluidsnelheid is gezakt geldt ξe = 0, in dit geval bestaat er dan geen gebied III.

In het gebied achter het wapen (gebied I) is het kogelgeluid verwaarloosbaar.

Voor rekenpunten in gebied II varieert de geometrische demping tussen 10 lg R en 25 lg R afhankelijk van de afstand R van het bronpunt op de kogelbaan tot het rekenpunt. De geometrische demping is 10 lg R op korte afstand van de kogelbaan bij een constante kogelsnelheid. Als gevolg van een afname van de snelheid van de kogel langs de kogelbaan en door invloed van turbulentie neemt de geometrische demping toe. De invloed van turbulentie is pas op een afstand Rtrans van de kogelbaan significant. Op grote afstand, groter dan 10 km, bedraagt de geometrische demping 20 lg R.

De transitieafstand Rtrans wordt bepaald met onderstaande formule:

met

xt lengte van de kogelbaan waar het projectiel een supersone snelheid heeft

L correlatielengte (L = 1.1 m)

μ02 = 10-5

De geometrische demping in gebied II wordt voor R ≤ Rtrans bepaald uit:

voor Rtrans < R ≤ Rmax geldt:

voor R > Rmax geldt:

met

k = -v1/c10

r0 = 1 m

R max = 10 km

Vóór het wapen maar buiten het Mach-gebied (gebied III) wordt de geometrische demping door twee termen bepaald:

  • de geometrische demping berekend volgens formule 4.27 voor het traject R1van de doelpositie naar een punt op de grens van het Mach-gebied dat het dichtst bij het rekenpunt ligt (punt P in figuur 4.7);

  • een extra demping die afhankelijk is van de afstand (R2) van dit punt P tot aan het rekenpunt:

waarin:

R1 de afstand van de doelpositie naar een punt op de grens van het Mach-gebied dat het dichtst bij het rekenpunt ligt;

R2 de afstand van het rekenpunt tot de grens van het Mach-gebied.

De afstanden R1 en R2 worden alleen voor de berekening van de geometrische demping in gebied III gebruikt, voor het berekenen van de overige dempingstermen wordt van het geluidpad uitgegaan van het bronpunt op de kogelbaan (in dit geval dus de doelpositie) naar het rekenpunt.

Figuur 4.7: Definitie van R1, R2 en R0 uit formule 4.28.

4.6.3 Luchtdemping

Bij de berekening van de luchtdemping wordt rekening gehouden met de vorm van het spectrum. Per octaafband (index k) wordt geschat hoe de geluidenergie over de drie tertsbanden (index j) binnen dit octaaf verdeeld is. Deze geluidenergie LEbj(fk) wordt bepaald op basis van een lineaire interpolatie van de niveaus van de naburige octaafbanden (bij kogelgeluid is dit niet nodig daar kogelgeluid per tertsband wordt berekend zie ook § 4.6.1):

met:

LEb(f0) = 2LEb(f1) – LEB(f2)

LEb(f10) = 2LEb(f9) – LEB(f8)

waarin:

LEb,j(fk) het bronniveau van de je tertsband (j = 1 t/m 3) van de octaafband met centrumfrequentie fk (k = 1 t/m 9).

De luchtdemping in de ke octaafband Dlucht(fk) wordt vervolgens bepaald uit het gewogen energetische gemiddelde van de luchtdemping van de tertsbanden binnen deze octaafband.

De waarden voor de luchtdemping αlu,j(fk) in tertsband j = 1, 2 en 3 van de ke octaafband zijn ontleend aan ISO-norm 9613-1 voor 10°C en 80% relatieve vochtigheid. Deze waarden zijn (in dB per km!) opgenomen in tabel 4.5

Tabel 4.5: Waarden voor de luchtdemping per tertsband in dB/km

nummer van tertsband binnen octaaf

octaafband middenfrequentie in Hz

16

31.5

63

125

250

500

1000

2000

4000

j=1

0.00452

0.0179

0.0669

0.254

0.764

1.63

2.86

6.23

19.0

j=2

0.00715

0.0282

0.108

0.378

1.02

1.97

3.57

8.76

28.7

j=3

0.0113

0.0444

0.167

0.547

1.31

2.36

4.62

12.7

43.9

4.6.4 Bodemdemping

In § 4.4.2 is omschreven hoe de bodemdemping met behulp van het gegevensbestand bepaald moet worden. In deze paragraaf wordt beschreven hoe de bodemdemping bepaald moet worden als er verschillende bodemvlakken door het geluidpad worden doorsneden, welke invloed de turbulentie heeft op de bodemdemping en hoe de bodemdemping bepaald moet worden als er in het geluidpad afschermende obstakels zijn.

De bodemdemping is afhankelijk van:

  • de horizontale afstand R tussen de bron (of spiegelbron) en rekenpunt;

  • de akoestische bodemhardheid (aangegeven met index ν). In de methode worden drie bodemhardheden onderscheiden (zie § 4.5.2): v=z voor een zeer absorberende bodem, v=a voor een absorberende bodem en v=h voor een harde bodem;

  • de frequentie;

  • de hoogtes van bron- en rekenpunt;

  • de meteorologische klasse.

In deze paragraaf geven we alleen de eerste twee parameters expliciet aan als argumenten van Dbodem:

met ck(ν) de coëfficiënten van het polynoom.

Meer dan één bodemvlak

Indien onder het geluidpad bodemtypen liggen met verschillende bodemhardheid worden voor mee- en tegenwindsituaties verschillende procedures toegepast.

  • Meewindsituaties (profielnrs. 4 t/m 7, 12 t/m 18 en 22 t/m 27)

    Om de bodemdemping voor meer dan één bodemvlak te bepalen worden voor de meewindsituaties eerst de horizontale afstanden (sv) bepaald, waarover het geluidpad door de verschillende bodemgebieden loopt. Voor elke bodemhardheid worden deze afstanden opgeteld.

waarin:

Nv aantal gebieden dat door het geluidpad wordt doorkruist met respectievelijk een zeer absorberende (v=z), een absorberende (v=a) en een harde bodem (v=h);

rmin,j,v, rmax,j,v minimale en maximale horizontale afstand van bron tot de grens van deelgebied j gemeten langs het geluidpad voor een bodemgebied met hardheid v (zie hierboven).

De bodemdemping voor een meewindsituatie wordt vervolgens bepaald door de volgende formule:

  • Tegenwindsituaties (profielnrs. 1 t/m 3, 8 t/m 10 en 19 t/m 21)

    Voor de bodemdemping bij tegenwindsituaties zijn alleen de bodemgebieden binnen een afstand ds van de bron en binnen een afstand dr van het rekenpunt van belang. Deze afstanden zijn afhankelijk van het profiel, van de frequentie en van de hoogte boven het plaatselijk maaiveld van respectievelijk bron- en rekenpunt.

met:

q = 21, 10, 16.5 en α = 0.9, 0.85, 0.78 voor respectievelijk de groepen 1, 2 en 3 van de geluidsnelheidsprofielen (zie formule 4.9). Ook parameter bn wordt bepaald door het profiel (zie tabel 4.1 in § 4.4.2).

De gebieden mogen elkaar niet overlappen. Indien ds + dr>R, waarin R de horizontale afstand tussen bron en rekenpunt is, moeten de afstanden in verhouding worden teruggeschaald tot ds' en dr'.

Binnen een afstand ds en dr van respectievelijk bron en rekenpunt worden achtereenvolgens de afstanden bepaald waarover het geluidpad door zeer absorberende, absorberende en reflecterende gebieden loopt. In verhouding tot de afstand ds + dr geeft dit de fracties fz, fa en fh zeer absorberende, absorberende en reflecterende bodem. De bodemdemping voor een tegenwindsituatie wordt vervolgens gegeven door:

  • Neutraal profiel (profielnr. 11)

    Voor de bepaling van de bodemdemping van de neutrale situatie (profielnr. 11) worden eerst de fracties fz, fa en fh bepaald over de totale afstand rtot tussen bron en rekenpunt. De bodemdemping volgt dan door toepassing van formule 4.36.

Turbulentie

De totale bodemdemping is naar boven toe begrensd als gevolg van turbulentie. Deze begrenzing is afhankelijk van de meteorologische klasse, de hardheid van de bodem en de frequentie. Bij het berekenen van de overdrachtsfuncties zoals deze in het gegevensbestand zijn opgenomen is dit effect niet verdisconteerd. Deze invloed wordt in rekening gebracht door een bovengrens Dbodem,max te stellen aan de bodemdemping zoals die met formule 4.37 bepaald is. In situaties met afschermende objecten moet de bovengrens toegepast worden op de som Dbodem + Dscherm.

In tabel 4.6 zijn de grenswaarden van de bodemdemping gegeven voor de verschillende bodemhardheden, de 27 meteorologische klassen en de 9 octaafbanden.

Tabel 4.6: Bovengrens van de bodemdemping Dbodem,max(v) voor akoestisch ‘zeer absorberende’ (v=z) ‘absorberende’ (v=a) en ‘reflecterende’ (v=h) bodems.

m

v

16

31.5

63

125

250

500

1000

2000

4000

z

25

26

20

17

19

20

24

25

26

1

a

25

26

19

15

18

20

24

25

26

h

25

25

17

9

13

17

22

24

26

z

29

18

22

21

22

19

18

19

20

2

a

29

18

21

19

21

19

18

19

20

h

29

17

19

13

16

16

16

18

20

z

29

29

17

24

25

19

17

18

19

3

a

29

29

16

22

24

19

17

18

19

h

29

29

14

16

19

16

15

17

19

z

26

26

17

14

18

22

26

27

28

8

a

26

26

16

12

17

22

26

27

28

h

26

25

14

6

12

19

24

26

28

z

24

23

20

16

18

19

21

22

23

9

a

24

23

19

14

17

19

21

22

23

h

24

22

17

8

12

16

19

21

23

z

29

19

22

20

21

18

18

19

20

10

a

29

19

21

18

20

18

18

19

20

h

29

18

19

12

15

15

16

18

20

z

29

29

19

23

27

19

19

20

21

11

a

29

29

18

21

26

19

19

20

21

h

29

29

16

15

21

16

17

19

21

z

28

25

14

16

21

24

29

29

29

19

a

28

25

13

14

20

24

29

29

29

h

28

24

11

8

15

21

27

29

29

z

26

26

16

14

19

21

25

26

27

20

a

26

26

15

12

18

21

25

26

27

h

26

25

13

6

13

18

23

25

27

z

23

23

18

15

18

19

20

21

22

21

a

23

23

17

13

17

19

20

21

22

h

23

22

15

7

12

16

18

20

22

z

29

29

22

24

27

24

29

29

29

Overig

a

29

29

21

22

26

24

29

29

29

h

29

29

19

16

21

21

27

29

29

Als onder het geluidpad verschillende bodemtypen liggen met verschillende bodemhardheid wordt de bovengrens Dbodem,max gegeven door:

met:

Dbodem,max(v) bovengrens voor bodemtype v voor een bepaald profiel.

De fracties fz, fa en fh worden voor de meewindprofielen en het neutrale profiel bepaald over de totale afstand tussen bron en rekenpunt, voor de tegenwindprofielen worden de fracties bepaald over een gereduceerd gebied bij bron- en rekenpunt, zoals dit boven formule 4.36 is beschreven. De begrenzing wordt eerst toegepast nadat met formule 4.33 c.q. 4.36 de bodemdemping berekend is en de eventuele schermwerking bepaald is.

Effectieve hoogte van bron of rekenpunt

Bij de bepaling van de bodemdemping is ook de hoogte van bron- en rekenpunt van belang. Indien het geluidpad één scherm snijdt dan wordt de hoogte van één van beide vervangen door een effectieve hoogte, afhankelijk van welk punt het dichtst bij het scherm staat. Als meer dan één scherm doorsneden wordt, worden de effectieve hoogtes van zowel het bron- als rekenpunt gebruikt. Eerst worden de schermen daartoe in twee groepen verdeeld; schermen die dichter bij de bron staan dan bij het rekenpunt en schermen die dichter bij het rekenpunt staan dan bij de bron. De effectieve hoogte voor de bron wordt bepaald op basis van het meest effectieve scherm uit de eerste groep, de effectieve hoogte voor het rekenpunt wordt bepaald op basis van het meest effectieve scherm uit de tweede groep (zie formule 4.53 in § 4.6.5). Indien geen schermen in een groep vallen wordt voor de effectieve hoogte de werkelijke hoogte van de bron of het rekenpunt genomen.

4.6.5 Afscherming

In situaties waarin het verticale vlak door het bron- en rekenpunt een object snijdt (bijvoorbeeld een geluidscherm), wordt de invloed van dit object in formule 4.2 in rekening worden gebracht door de term Dscherm. In andere situaties is deze term gelijk aan nul.

Situaties met één scherm

Een scherm wordt geschematiseerd door een verticaal staande rechthoek. Drie geluidpaden worden onderscheiden. Eén pad via de top van het scherm en twee paden via de zijkanten van het scherm (zie figuur 4.8). De verticale schermhoogte zsch,1 is de hoogte van het scherm ten opzichte van het laagste aan het scherm grenzende maaiveld. De ‘horizontale schermhoogten’ zsch,2 en zsch,3 zijn in figuur 4.9 gedefinieerd.

Figuur 4.8: Geluid bereikt het rekenpunt achter een eindig scherm via de top en via de zijkanten van een scherm.

Figuur 4.9: Definitie van ‘horizontale’ schermhoogtes in een bovenaanzicht van een scherm tussen bron en rekenpunt.

Afhankelijk van de meteorologische situatie zijn de geluidpaden meer of minder gekromd. Hiermee wordt rekening gehouden bij de bepaling van de schermwerking. De schermwerking wordt daarom per meteorologische klasse bepaald.

De straalkromming wordt in rekening gebracht door correcties Δφs en Δφr toe te passen op de hoeken φs,0 en φr,0 die in figuur 4.10 zijn aangegeven (alle hoeken in deze paragraaf worden in radialen uitgedrukt). In formule:

Er wordt alleen rekening gehouden met straalkromming voor de zogenaamde meewindprofielen (n = 4 t/m 7, 12 t/m 18, 22 t/m 27 in tabel 4.1). Voor de andere profielen geldt Δφs = 0 en Δφr = 0. Ook voor de geluidpaden 2 en 3 (de horizontale omwegen) in figuur 4.9 wordt straalkromming buiten beschouwing gelaten. In de overige gevallen zijn deze correcties te bepalen uit de maximale hoogte van de geluidstraal zmax,n.

Voor de berekening van zmax,n wordt eerst voor elk meewindprofiel een hoogte zmax0,n berekend:

waarin:

met:

fk octaafband middenfrequentie (f6 = 500 Hz);

fabs fractie van het geluidpad waarvoor de bodem ‘absorberend’ of ‘zeer absorberend’ is;

Δx de horizontale afstand (langs het geluidpad) van bron- of rekenpunt naar het scherm afhankelijk of Δφs dan wel Δφr bepaald moet worden;

bn parameter van het geluidsnelheidsprofiel (zie tabel 4.1).

Voor zmax,n geldt nu:

De correcties zijn vervolgens te bepalen uit onderstaande formule (t = s of r, zie ook formule 4.9):

De demping door het scherm wordt per geluidpad (p=1,2,3) gegeven door:

opmerking: φs en φr zijn beide een functie van zowel de frequentie, het meteorologisch profiel als het geluidpad.

In bovenstaande formule worden de volgende functies toegepast:

max(x,y) is gelijk aan de grootste van zijn twee argumenten:

T(x) geeft het teken van x aan:

Γ p(fk) is gedefinieerd als:

waarin:

rs afstand van bron naar top van scherm (zie figuur 4.10);

rr afstand van rekenpunt naar top van scherm.

De factor Hp brengt de eindige afmetingen van het scherm in rekening:

ΔDp is de tophoekcorrectie voor een wal met tophoek γ (zie figuur 4.5). Deze correctie wordt alleen toegepast voor geluidpad 1 over de top van het obstakel:

waarin:

ρ = 1 – αabs

δ = max(0;min(0.3;φsφr – π))

αabs de frequentieafhankelijke absorptiecoëfficiënt van de zijvlakken van de wal (0 ≤ αabs ≤ 1). Voor een harde wal geldt αabs = 0, voor een zachte wal geldt αabs = 1, bij speciale gevallen kan hiervan worden afgeweken).

φs, φr diffractiehoeken voor geluidpad 1.

Voor de tophoek γ geldt de restrictie 0.25π ≤ γ ≤ 0.9π. Voor een wal met γ > 0.9π moet de waarde γ = 0.9π gebruikt worden. Voor een wig met γ < 0.25π geldt ΔD = 0.

De totale schermwerking Dscherm wordt berekend uit de schermwerkingen Dscherm,p van de drie geluidpaden, volgens de volgende formule:

Bovenstaande formule geldt voor het neutrale profiel (profielnr. 11) en de tegenwindsituaties (profielnrs. 1 t/m 3, 8 t/m 10 en 19 t/m 21). Bij alle meewindsituaties (profielnrs. 4 t/m 7, 12 t/m 18 en 22 t/m 27) geldt formule 4.51 alleen voor de octaafband middenfrequenties van 16 Hz tot 250 Hz. Boven 250 Hz geldt bij alle meewindsituaties:

Een schermdemping groter dan 20 dB is over het algemeen moeilijk te realiseren. Indien de berekende schermdemping voor een octaafband groter is dan 20 dB moet men er alert op zijn dat door omloopgeluid (bijvoorbeeld door een diffuse reflectie aan een bijliggend object) of door de aanwezigheid van turbulente wervels in de atmosfeer de effectieve werking van het scherm deels tenietgedaan kan worden. Daarom wordt de schermdemping begrensd op 20 dB, tenzij nader onderzoek aantoond dat hogere reducties bereikt kunnen worden.

Meervoudig scherm

Als een aantal schermen aan elkaar vastzit, dan spreken we van een meervoudig scherm. Alleen concave meervoudige schermen worden in beschouwing genomen. Een voorbeeld van een concaaf meervoudig scherm is weergegeven in figuur 4.11.

Figuur 4.11: Meervoudig scherm met zes hoekpunten. De linker omweg is aangegeven. Er is geen rechter omweg mogelijk in deze situatie.

De schermwerking wordt als volgt berekend:

  • 1.

    Pad via top van het scherm:

    Eerst wordt bepaald welke schermen gesneden worden door het verticale vlak door bron- en rekenpunt. Vervolgens wordt het scherm geselecteerd waarbij het verschil tussen de diffractiehoeken φs,0φr,0 het grootst is. Als geen enkel scherm gesneden wordt is Dscherm = 0.

  • 2.

    Pad via de zijkanten van het scherm:

    Het horizontale vlak wordt verdeeld in zes gebieden, gescheiden door een lijn door rekenpunt en bronpunt en door twee lijnen a-b en c-d, die hier dwars opstaan (zie figuur 4.11).

    • a)

      Linker omweg. Bepaal het snijpunt van de lijn van bronpunt naar rekenpunt met het in stap 1 geselecteerde scherm. Volg het meervoudige scherm naar links. Als het meervoudige scherm lijn a of lijn c snijdt, wordt de linker omweg niet meegerekend. De betreffende Hp(fk) is dan gelijk aan 1 (zie formule 4.49 en 4.51) en Dscherm,p = ∞. Als het meervoudige scherm lijn a en lijn c niet snijdt, wordt van alle hoekpunten in gebied 3 het hoekpunt geselecteerd met de grootste waarde van het horizontaal diffractiehoek-verschil φsφr. Dit hoekpunt bepaalt de linker omweg.

    • b)

      Rechter omweg: analoog.

De procedure is ook van toepassing op een gesloten meervoudig scherm, waarbij beginpunt en eindpunt van het scherm samenvallen. Een voorbeeld hiervan is een gebouw.

Meer dan één scherm

In situaties met meer dan één scherm tussen bron- en rekenpunt worden maximaal twee schermen in rekening gebracht. Eerst worden de schermen in twee groepen verdeeld: een groep met schermen die zich dichter bij de bron bevinden en een groep met schermen die zich dichter bij het rekenpunt bevinden. Van beide groepen wordt het scherm geselecteerd met het grootste verschil van de diffractiehoeken (φs,0φr,0) voor de verticale omweg. De schermwerkingen van de twee geselecteerde schermen worden, inclusief de bijdragen van de horizontale omwegen, bij elkaar opgeteld. Deze som geeft de totale schermwerking.

De effectieve bronhoogte (van toepassing bij de bepaling van de bodemdemping) wordt bepaald op basis van het geselecteerde scherm uit de eerste groep, de effectieve hoogte van het rekenpunt wordt bepaald op basis van het geselecteerde scherm uit de tweede groep.

Effectieve hoogte van bron- of rekenpunt

Bij de bepaling van de bodemdemping wordt, indien het geluidpad één scherm snijdt, de hoogte van het bronpunt of van het rekenpunt (afhankelijk van het feit of het bronpunt of het rekenpunt dichter bij het scherm ligt) vervangen door een effectieve hoogte:

waarin:

φs, φr diffractiehoeken voor geluidpad 1.

Bovenstaande formule is gegeven voor het bepalen van de effectieve hoogte van de bron. Voor de bepaling van de effectieve hoogte van het rekenpunt moet hs worden vervangen door hr.

Bij de berekening van de bodemdemping bij reflecties wordt – indien sprake is van afscherming- voor de bepaling van de effectieve hoogte uitgegaan van het geluidpad van gespiegelde bron naar rekenpunt. Het reflecterend vlak heeft hierbij geen invloed op de bepaling van de effectieve hoogte.

Figuur 4.12: Schematische weergave van afscherming van kogelgeluid.

Afscherming kogelgeluid

Voor de afscherming van kogelgeluid wordt in principe dezelfde benadering gevolgd als bij afscherming voor mondingsgeluid of detonatiegeluid. Ook hierbij worden drie geluidpaden onderscheiden: een pad over de top van het obstakel en twee paden langs de zijkanten van het scherm. Het verschil is echter dat deze drie geluidpaden over het algemeen verschillende bronpunten op de kogelbaan hebben (zie figuur 4.12). Het bronpunt van het pad over de top is gelijk aan het bronpunt voor de onafgeschermde situatie; de twee andere bronpunten worden bepaald door formule 4.19 met (xr, yr) respectievelijk de linker en rechter zijkant van het scherm. Indien kogelgeluid is afgeschermd wordt de bijdrage van het kogelgeluid bepaald uit de energetisch gesommeerde bijdragen van de drie bronnen die op deze drie bronposities gedacht kunnen worden. Dit betekent dat per bron alle dempingstermen (geometrische-, lucht-, bodem-, nietlineaire- en schermdemping) bepaald moeten worden.

Figuur 4.13: Berekening van kogelgeluidbijdrage voor situaties waarbij het mondingsgeluid is afgeschermd maar een rand van het scherm in het Mach-gebied ligt.

Er is sprake van afscherming indien de lijn van het bronpunt van het kogelgeluid (bepaald in de niet afgeschermde situatie) naar het rekenpunt het scherm snijdt, anders is er sprake van een onafgeschermde situatie en wordt de systematiek gehanteerd, die hiervoor beschreven is. Een uitzondering hierop is de situatie die in nevenstaande figuur is afgebeeld waarbij het rekenpunt in gebied I ligt en het mondingsgeluid wordt afgeschermd. Eén verticale rand van het scherm ligt echter in het Mach-gebied (gebied II). Ook in deze situatie wordt een kogelgeluidbijdrage berekend. Hierbij wordt er maar één (horizontaal) geluidpad beschouwd en wel langs de verticale rand van het scherm dat in het kogelgeluidgebied ligt. Deze bijdrage wordt echter alleen meegenomen als de bovenrand van het scherm minimaal 1 m boven de mond van het wapen uitsteekt.

De bronsterkten van de genoemde drie bronnen (of één bron voor het laatst genoemde geval) worden bepaald zoals in § 4.6.1 beschreven. De geometrische demping wordt op dezelfde manier bepaald als voor onafgeschermd kogelgeluid conform de formules die in § 4.6.2. voor kogelgeluid zijn beschreven. Het is hierbij van belang in welk gebied een verticale rand van een scherm ligt (zie figuur 4.7). Indien bijvoorbeeld een schermrand in gebied III ligt dient voor de geometrische demping formule 4.28 toegepast te worden. Over het algemeen is dus de geometrische demping voor de verschillende combinaties verschillend aangezien de bronposities niet gelijk hoeven te zijn. Ook de lucht-, bodem- en niet-lineaire demping worden (vergelijkbaar met de berekeningsmethode voor afgeschermd mondingsgeluid) bepaald voor het directe pad van bronpunt naar rekenpunt. De schermdemping tot slot wordt bepaald met formule 4.45 waarbij per bronpunt maar één pad wordt beschouwd overeenkomend met het pad dat in figuur 4.12 staat aangegeven. De tophoekcorrectie wordt alleen toegepast voor het pad over de top van het obstakel. Voor de situatie die in figuur 4.13 is weergegeven wordt dus geen tophoekcorrectie toegepast. Verder zijn dezelfde restricties van toepassing als die bij formule 4.50 en 4.52 zijn gegeven.

Voor het bepalen van de geluidbelasting (zie formule 3.1 t/m 3.7 in hoofdstuk 3) worden eerst de verschillende bijdragen van het afgeschermde kogelgeluid – langs maximaal drie verschillende paden – energetisch gesommeerd.

4.6.6 Niet-lineaire demping

Alleen voor de berekening van de geluidbelasting door kogelgeluid wordt een dempingsterm in rekening gebracht, die voortkomt uit de niet-lineaire overdracht van kogelgeluid. Deze term is alleen van toepassing voor rekenpunten in gebied II. Hiervoor geldt:

met

r 0 = 1 m

k = -v1 / c10

Voor rekenpunten in gebied III wordt deze term alleen over de afstand R1 in rekening gebracht.

4.6.7 Spiegelreflecties

Figuur 4.14: Voor een spiegelreflectie geldt dat de hoek van inval (αin) gelijk is aan de hoek van reflectie (αrefl). Een spiegelreflectie wordt gemodelleerd met behulp van een spiegelbron.

Spiegelreflecties aan objecten worden in rekening gebracht door gebruik te maken van spiegelbronnen. Hierbij moet aan een aantal eisen worden voldaan (zie § 4.5.4):

  • 1.

    Het object heeft een min of meer vlakke en geluidreflecterende wand.

  • 2.

    De reflecterende wand moet een dichtheid hebben groter dan 10 kg/m2. Bomenrijen en open procesinstallaties worden zo buitengesloten.

  • 3.

    Het geluid moet via een reflectie (zoals bij optische spiegeling) het rekenpunt kunnen bereiken. De hoek tussen de geluidreflecterende wand en de verticaal moet daarom kleiner zijn dan 10°. Van een talud kan dus geen reflectiebijdrage komen.

Indien een object meer dan één reflectievlak heeft (zoals een scherm met enige hoeken) moet ieder vlak van het object als een mogelijk afzonderlijk reflecterend object beschouwd worden.

Op het geluidpad tussen bron- en rekenpunt worden slechts enkelvoudige reflecties in de berekening meegenomen.

Het bronniveau van een spiegelbron L*Eb is lager dan het bronniveau van de originele bron; L*Eb wordt bepaald uit bronniveau LEb van de originele bron met behulp van onderstaande formule:

waarin LEb het bronniveau (per octaafband) van de originele bron in de richting van het reflectiepunt is en Drefl de reflectiedemping. De reflectiedemping voor spiegelreflecties wordt gegeven door

waarin:

εhor de ‘horizontale’ reflectie-effectiviteit (0 ≤ εhor ≤ 1),

εver de ‘verticale’ reflectie-effectiviteit (0 ≤ εver ≤ 1),

ρ de reflectiviteit (0 ≤ ρ ≤ 1).

De reflectiviteit ρ wordt bepaald door de absorberende eigenschappen van het materiaal waaruit het reflecterende vlak bestaat. In het algemeen is ρ een functie van de frequentie. Voor een hard vlak geldt ρ = 1.

De horizontale effectiviteit εhor en de verticale effectiviteit εver representeren de invloed van de eindige breedte respectievelijk hoogte van het vlak.

De ‘horizontale’ reflectie-effectiviteit wordt gegeven door de formule

waarin:

W 1, W2 horizontale afstand van reflectiepunt tot rand reflecterend vlak loodrecht op lijn van bron naar reflectiepunt (zie figuur 4.15);

rb horizontale afstand van de bron tot het reflectiepunt;

λ = c 10 /fk golflengte die overeenkomt met de octaafbandmidden-frequentie fk;

αhor = 4.5 een constante.

De horizontale afstand rb van de bron tot het reflectiepunt wordt hierbij kleiner verondersteld dan de afstand van het rekenpunt tot het reflectiepunt; als dit niet zo is dan wordt voor rb de afstand van het rekenpunt tot het reflectiepunt gebruikt.

De afstanden W1 en W2 worden gegeven door de formules W1 = L1 cosα en W2 = L2 cosα, waarin L1 en L2 de afstanden zijn van het reflectiepunt tot de beide randen van het vlak, en α de reflectiehoek is (zie figuur 4.15).

Figuur 4.15: Illustratie van een spiegelreflectie, met daarin aangegeven de afstanden W1 en W2, de horizontale afstand rb van de bron tot het reflectiepunt, en de reflectiehoek α.

De ‘verticale’ reflectie-effectiviteit wordt gegeven door de formule

waarin Dscherm de schermwerking is van het reflecterende vlak voor de overdracht van de spiegelbron naar het rekenpunt (zie figuur 4.14). De schermwerking is afhankelijk van de geometrie, de frequentie, de meteorologische klasse en het bodemtype. Bij de berekening van Dscherm wordt alleen het geluidpad via de top van het scherm meegerekend; het scherm wordt in horizontale richting dus oneindig lang verondersteld. Er wordt geen tophoekcorrectie toegepast.

Voor de berekening van de geluidoverdracht langs een gereflecteerde straal moet dezelfde procedure gevolgd worden als voor de directe geluidoverdracht, met dien verstande dat het verloop van bodemruwheid en bodemhardheid bepaald wordt langs het gereflecteerde geluidpad.

Schermwerking langs dit gereflecteerde geluidpad wordt berekend voor die schermen die door dit pad worden doorsneden. Voor schermen tussen bron en reflecterend object wordt voor de schermwerking uitgegaan van bron en gespiegeld rekenpunt. Voor schermen tussen rekenpunt en reflecterend object wordt voor de schermwerking uitgegaan van de gespiegelde bron en het rekenpunt.

De richting van het geluidpad, aangegeven door hoek θ(b) in formule 3.2 en 3.3, verandert na een reflectie. Voor de berekening van de deelbijdrage tot de geluidbelasting wordt in de genoemde formules echter van de richting van het langste deel van het geluidpad uitgegaan (voor de vaststelling van de hoekafhankelijke bronsterkte wordt natuurlijk uitgegaan van het eerste deel van het geluidpad vanaf de bron).

Reflectie van kogelgeluid

Een reflectie van kogelgeluid kan het rekenpunt slechts bereiken als het rekenpunt zich binnen het gebied bevindt dat door spiegeling van het kogelgeluid wordt bestreken. Dit is geïllustreerd in figuur 4.16.

Uit de positie van het gespiegelde rekenpunt kan het bronpunt op de kogelbaan van het gereflecteerde kogelgeluid bepaald worden. Als het gespiegelde rekenpunt in gebied III ligt wordt de reflectiebijdrage verwaarloosd.

Voor de bepaling van de transitieafstand (zie formule 4.26) wordt voor xt bij de berekening van de reflectiebijdrage dat deel van de kogelbaan genomen waarop bronpunten liggen waarvan het geluid kan reflecteren in het scherm (zie figuur 4.16). Alleen het gedeelte van het scherm dat in gebied II ligt wordt hierbij verdisconteerd.

Figuur 4.16: Schematische weergave van de reflectie van kogelgeluid.

4.6.8 Diffuse reflectie

Diffuse reflecties treden op aan een bosrand; minimaal moeten er drie bomenrijen aanwezig zijn voordat een diffuse reflectie wordt meegerekend. Een diffuse reflectie treedt op indien er ‘zicht’ is op de bosrand vanuit zowel de positie van de bron als de positie van het rekenpunt; optische spiegeling is hierbij irrelevant. De bijdrage van diffuse reflecties is alleen relevant indien het rechtstreekse geluidpad van bron naar rekenpunt wordt afgeschermd. Indien deze afscherming voor de 250 Hz octaafband meer dan 8 dB bedraagt (berekend voor profiel 14 mbv formule 4.51) en aan de hiervoor genoemde voorwaarden voldaan wordt, dient diffuus geluid in rekening te worden gebracht.

Een bosrand wordt gemodelleerd met een enkele rij equidistante cilinders (zie figuur 4.17). De afstand tussen naburige cilinders deff bedraagt de helft van de gemiddelde afstand tussen naburige bomen van de eerste drie bomenrijen van de bosrand. Deze gemiddelde afstand wordt benaderd door

, waarbij n2 het gemiddeld aantal bomen per oppervlakte-eenheid is. De straal van de cilinders rcil is gelijk aan de gemiddelde straal van de bomen in de bosrand. Indicatieve waarden voor een gemiddeld bos zijn deff = 1,4 m en rcil = 0,1 m.

Alle cilinders dragen bij aan de diffuse reflectie. Diffuse reflecties worden gemodelleerd met behulp van virtuele bronnen (zie figuur 4.18a). In principe kan voor elke cilinder een virtuele bron gebruikt worden, maar voor een efficiënte berekening worden de cilinders gegroepeerd in segmenten (zie figuur 4.18b). De lengtes van de segmenten worden zo gekozen dat de hoek waaronder elk segment vanuit de bron gezien wordt ongeveer 5° is (of vanuit het rekenpunt, indien dit zich dichter bij de bosrand bevindt). Het aantal cilinders binnen een segment is geheeltallig. De hoek waaronder een segment gezien wordt kan hierdoor enigszins variëren. De precieze grootte van een hoeksector wordt bepaald door het maximaal aantal cilinders dat net binnen een sector van 5° past. Indien de hoek waaronder de totale rij cilinders wordt gezien minder dan 5° is wordt slechts één segment gebruikt. De bijdragen van de virtuele bronnen aan de reflectie kunnen als incoherent worden beschouwd, zodat elke virtuele bron als een aparte bron kan worden behandeld.

Figuur 4.17: Bij een diffuse reflectie aan een bosrand wordt de bosrand (links) vervangen door één rij equidistante cilinders aan de bosrand (rechts).

Figuur 4.18a: De bijdrage van een cilinder aan een diffuse reflectie wordt gerepresenteerd door een virtuele bron. Een virtuele bron ligt in het verlengde van de lijn van de cilinder naar het rekenpunt. De afstand van de virtuele bron naar de cilinder is gelijk aan de afstand van de echte bron naar de cilinder.

Figuur 4.18b: Voor een efficiënte berekening worden de cilinders gegroepeerd in segmenten. De bijdragen van de cilinders binnen een segment worden aan elkaar gelijk gesteld, zodat per segment slechts een berekening voor de centrale cilinder uitgevoerd hoeft te worden.

Net als bij spiegelreflecties wordt door middel van een reflectiedemping Drefl rekening gehouden met het feit dat een virtuele bron zwakker is dan de echte bron. Het bronniveau L*Eb van een virtuele bron (per octaafband) wordt bepaald met formule 4.55. De reflectiedemping Drefl voor diffuse reflecties wordt hierin gegeven door:

waarin

εver ‘verticale’ reflectie-effectiviteit (0 ≤ εver ≤ 1),

ρ reflectiviteit per cilinder (0 ≤ ρ ≤ 1),

Ncil aantal cilinders in het segment.

De verticale reflectie-effectiviteit εver wordt op dezelfde manier berekend als voor spiegelreflecties (zie formule 4.58), waarbij voor de schermhoogte de gemiddelde hoogte van de bomen wordt gebruikt.

De reflectiviteit per cilinder ρ wordt gegeven door

met

en

waarin c1 = 25 m/s, r1 = 25 m en α1 = 10 constanten zijn, en r0 en δφ parameters die in figuur 4.18b aangegeven zijn; de index n van het segment is hier voor het gemak weggelaten. De parameter δφ is de hoek tussen de lijnen van de centrale cilinder van het segment naar de bron en naar het rekenpunt.

De parameter r0 is de afstand van de bron tot de centrale cilinder van het segment, waarbij de afstand van de bron tot de centrale cilinder kleiner wordt verondersteld dan de afstand van het rekenpunt tot de cilinder; als dit niet zo is dan moet voor r0 de afstand van het rekenpunt naar de centrale cilinder gebruikt worden.

Bij de overdracht van een virtuele bron naar het rekenpunt treden de dempingen Dgeo, Dlucht, Dbodem en eventueel Dscherm op. De berekening van deze dempingen gaat op dezelfde manier als dit bij spiegelreflecties is beschreven.

5 Beschrijving invoergegevens

5.1 Gebruiksbeschrijving

5.1.1 Schietbanen

Met betrekking tot het gebruik van de schietinrichting moeten de volgende gegevens worden vermeld:

  • aantal dagen (07.00 – 19.00 uur), avonden (19.00 – 23.00 uur) en nachten (23.00 – 7.00 uur) per jaar dat de schietbanen in gebruik zijn;

  • mogelijke beperkingen die gesteld zijn aan het gebruik van de schietinrichting;

  • schietbaantype (zie § 2.7);

  • akoestische voorzieningen;

  • lengte van de schietbanen;

  • locatie van de schietposities;

  • locatie van de doelposities;

  • specificatie van de wapentypes en de munitie (met bijbehorende aandrijvende lading) waarmee geschoten wordt;

  • hoogte van het bronpunt van elk wapentype boven het plaatselijk maaiveld;

  • aantal schoten per jaar, uitgesplitst naar

    • beoordelingsperiode (dag: 07.00 – 19.00 uur, avond: 19.00 – 23.00 uur, nacht: 23.00 – 7.00 uur), alleen voor de dagperiode wordt dit uitgesplitst naar zon- en feestdagen en overige dagen;

    • schietbaan;

    • schietpositie;

    • doelpositie;

    • wapen-munitiecombinatie;

  • verdeling van de schoten naar de stand waaruit geschoten wordt (liggend of staand).

5.2 Rekenmodel

5.2.1 Toepassingsbereik

In het akoestisch rapport moet worden aangetoond dat de betreffende situatie valt binnen het toepassingsbereik van bijlage 9 van de Activiteitenregeling.

5.2.2 Gebruikte software

De volgende gegevens over de gebruikte software moeten worden vermeld:

  • datum of versie van toegepaste rekenprogramma(’s);

  • datum of versie van de toegepaste gegevensbestanden.

5.2.3 Modellering

In het rapport moet vermeld worden welke keuzes er zijn gemaakt met betrekking tot de modellering en waarom deze keuzes zijn gemaakt. Wanneer in de modellering wordt afgeweken van de ‘Reken- en meetvoorschrift ter bepaling van de geluidbelasting ten gevolge van schietactiviteiten’, moet dit met redenen omkleed worden aangegeven.

Als de brongegevens niet in het gegevensbestand zijn opgenomen maar uit emissiemetingen zijn verkregen, moeten deze metingen zijn uitgevoerd zoals beschreven in TNO-rapport: ‘Toelichting op toepassing van methoden voor meten en rekenen aan schietgeluid’ (TNO 2014 R10135). De beschrijving van de emissiemetingen dient als bijlage aan het rapport te worden toegevoegd. Ook kan volstaan worden met een verwijzing naaar een bestaande rapportage.

Als de brongegevens niet direct uit metingen zijn bepaald, moet de reden hiervan opgegeven worden en moet vermeld worden hoe deze brongegevens zijn verkregen. Dit dient ook te gebeuren als gebruik gemaakt is van de categorieindeling voor wapen-munitiecombinaties van hand- en vuistvuurwapens. De procedure hiervoor staat beschreven in het eerder genoemde TNO-rapport.

5.2.4 Invoergegevens voor het rekenmodel

In de hoofdtekst van het akoestisch rapport moet een globale beschrijving van de invoergegevens voor het rekenmodel gegeven worden. Een gedetailleerde beschrijving van de invoergegevens en een grafische weergave van de geometrische invoergegevens wordt als bijlage in het rapport opgenomen.

5.3 Berekeningsresultaten

Voor elk rekenpunt moet voor de drie beoordelingsperioden de geluidbelasting gegeven worden (Bs,dag, Bs,avond en Bs,nacht) samen met de daaruit afgeleide dag-avond-nachtwaarde (Bs,dan) van de geluidbelasting. In de bijlage van het rapport moet de geluidbelasting per bron gegeven worden voor elk rekenpunt en voor elke beoordelingsperiode.

BIJLAGE A: METHODE VOOR DE BEREKENING VAN Les, periode BIJ BEPERKTE KANS OP HOORBAARHEID

In deze bijlage wordt de methode voor de berekening van de deelbijdrage aan de geluidbelasting (LEs, periode, zie formule 3.1) gegeven die van toepassing is bij lagere geluidsniveaus. In dit geval worden de impulstoeslag (Pimp=12 dB) en de toeslag voor extra laagfrequente componenten in het geluid (Plf(b,m)) bij de berekening van de geluidbelasting, slechts meegenomen voor zover het geluid waarneembaar is op het immissiepunt. De deelbijdrage LEs,periode(b,m) (zie formule 3.1) wordt dan bepaald als de energetische som van twee termen, die gewogen zijn met de kans dat een schot (van bron b voor meteorologische situatie m) respectievelijk wel en niet gehoord wordt:

kperiode is hierbij de kans dat het schietgeluid in de dag-, avond of nachtperiode hoorbaar is. Deze kans hangt onder andere af van het geluidniveau van het schietgeluid, de omgeving waarin men zich bevindt en de aard van de activiteiten waar men mee bezig is.

Bovenstaande formule kan ook geschreven worden als

met

C(b,m) is hierbij dan de correctie om een deelbijdrage van schietgeluid om te rekenen naar een even hinderlijk niveau van wegverkeersgeluid. Gemakkelijk is in te zien dat C(b,m) = Pimp + Plf(b,m) voor kperiode = 1, en C(b,m) = 0 voor kperiode = 0.

De kans kperiode wordt bepaald door:

waarin voor een betreffende periode de z-waarde gegeven wordt door

zie voor de berekening van ΔL' hoofdstuk 3. De coëfficiënten a1 t/m a4zijn hierbij afhankelijk van de periode en zijn weergegeven in onderstaande tabel.

Tabel A.1: Coëfficiënten a1 t/m a4voor de dag-, avond- en nachtperiode.

dag

avond

nacht

a1

-5.3

-5.3

-0.413

a2

0.155

0.155

0.063

a3

0.002

0.002

0.0054

a4

45

45

25

Formule (A.4) beschrijft de gestandaardiseerde cumulatieve normaalverdeling. In standaard statistiekboeken zijn tabellen opgenomen die voor willekeurige waarden van z de uitkomst van deze integraal geven.

Toelichting

1 Waarom een voorschrift specifiek voor schietgeluid?

In het kader van de Wet geluidhinder en Wet milieubeheer zijn voor verschillende typen van geluidbronnen (wegverkeer, industrie) verschillende rekenvoorschriften geschreven. Hierin zijn methodes gegeven waarmee de beoordelingsgrootheden voor de verschillende soorten geluid kunnen worden bepaald.

Uitgebreid onderzoek naar de hinderlijkheid van schietgeluid liet zien dat hiervoor een ander beoordelingscriterium gehanteerd moest worden. Daarnaast bleken de bestaande reken- en meetmethoden te beperkt en te onnauwkeurig om voor schietgeluid te kunnen worden toegepast. Daarom is een nieuw voorschrift opgesteld dat technische procedures bevat voor de beoordeling van schietgeluid.

De gegevensbestanden, die voor de rekenmethode uit dit voorschrift worden toegepast worden ter beschikking gesteld. Hierdoor kan de geluidbelasting voor verschillende schietinrichtingen via berekeningen uniform vastgesteld worden.

2 Beoordeling van schietgeluid

Eén van de kenmerken van schietgeluid is dat in een fractie van een seconde het maximale geluidniveau wordt bereikt. Het karakter van schietgeluid wijkt daarmee af van dat van wegverkeers-, railverkeers- en industriegeluid. Het aanzwellen van het geluid van individueel voorbijrijdende motorvoertuigen en treinen strekt zich, gelet op de relevante afstand tussen de weg en de woonhuizen, meestal over ten minste enkele seconden uit en verloopt daarmee veel gelijkmatiger. Op enige afstand van drukke verkeerswegen en van veel industrieterreinen heeft dat geluid een min of meer continu karakter gekregen.

Naast het impulsmatig karakter wordt schietgeluid ook gekenmerkt door perioden van activiteit afgewisseld met stiltes. Tijdens schietactiviteiten vallen er regelmatig pauzes van tenminste enkele minuten. Ook bij schietinrichtingen met meer dan één baan zijn er perioden waarin het schietgeluid geheel afwezig is. Ook in dit opzicht is schietgeluid anders van karakter. Bij wegverkeersgeluid strekken de variaties in geluidniveau zich over veel langere perioden uit, waarbij de niveaufluctuaties door bijvoorbeeld de ochtend- of avondspits ook veel kleiner zijn dan bij schietgeluid.

Onder andere door bovengenoemde verschillen tussen schietgeluid enerzijds en wegverkeers- en industriegeluid anderzijds, is géén van de in het kader van de Wet geluidhinder ontwikkelde beoordelingsmethoden van toepassing op schietgeluid. Daarom is een specifieke beoordelingsgrootheid ontwikkeld die echter toch kan worden gebruikt binnen de norm-systematiek van de Wet geluidhinder. De dosis-effect relatie voor hinder ten gevolge van wegverkeersgeluid is hierbij als referentie gekozen. Dit houdt in dat bij gelijke hinderbeleving de getalwaarden van de geluidbelasting van schietgeluid en wegverkeersgeluid aan elkaar gelijk zijn. De keuze van wegverkeersgeluid als referentie is erg voor de hand liggend omdat naar de hinderbeleving van deze geluidsbron internationaal gezien het meeste onderzoek is verricht.

De diversiteit van vuurwapens, en daarmee de aard van de knallen, is zeer groot. In de beoordelingsmethode wordt er rekening mee gehouden dat deze knallen niet alle even hinderlijk zijn. Het verschil in hinder wordt onder andere veroorzaakt door het feit dat knallen van zware vuurwapens eerder tot schrikreacties aanleiding kunnen geven dan knallen van lichte vuurwapens. Daarnaast wordt voor de dagperiode van de zondag een toeslag gehanteerd om de extra hinder van schieten op zondag te verdisconteren. De gedachte hierachter is dat zondag overdag, in relatie tot de extra verwachte hinder, als een soort avond beschouwd kan worden. Een feestdag wordt hierbij ook als een zondag beschouwd.

De meeste schietterreinen zijn niet continu in gebruik. In overeenstemming met de resultaten van onderzoek naar de invloed van onregelmatig gebruik van schietterreinen op de geluidhinder wordt rekening gehouden met de hinderbeperkende invloed van de schietvrije dagen. Indien minder dan 30 dagen per jaar wordt geschoten, wordt van deze regel afgeweken.

Indien er in een jaar op 12 of minder dagen in een bepaalde beoordelingsperiode wordt geschoten, kan de hinder hiervan niet objectief worden vastgesteld, volgens de geldende definities van hinder. Bs wordt dan berekend alsof er in totaal 12 dagen geschoten wordt.

3 Fysische modellering van schietgeluid

Bij het geluid dat ontstaat bij het gebruik van een vuurwapen, worden drie principieel verschillende bijdragen onderscheiden:

  • mondingsgeluid

  • detonatiegeluid

  • kogelgeluid

Mondingsgeluid is de knal die ontstaat door het explosief ontbranden van de voortdrijvende lading van de munitie. Indien de munitie een detonerende lading heeft ontstaat een tweede knal door de explosie van deze lading. Voor de modellering van mondings- en detonatiegeluid wordt van puntbronnen uitgegaan.

Kogelgeluid is geluid dat ontstaat door verstoring van de lucht door een supersone kogel. Dit ontstaat dus alleen als de snelheid van de kogel groter is dan de geluidsnelheid. Door het bijzondere geluidopwekkingsmechanisme van kogelgeluid is ook de modellering ervan zeer specifiek en daardoor afwijkend van bijvoorbeeld de modellering van wegverkeerslawaai met lijnbronnen. Zo moet in een aantal gevallen rekening gehouden worden met niet-lineariteit.

Voor de zwaardere wapentypen wordt het mondingsgeluid (en in mindere mate het kogelgeluid) door lage frequenties gedomineerd. Dit type schietgeluid kan tot op grote afstand waarneembaar zijn. Voor dergelijke afstanden en ook voor dit lage frequentiegebied bleken de bestaande modellen te onnauwkeurig.

Voor de modellering van schietgeluid konden daarom de bestaande methoden niet worden gebruikt. Daarom zijn hiervoor andere rekenmethoden ontwikkeld.

In de ‘Handleiding meten en rekenen industrielawaai’ is een zogenaamd meteoraam gedefinieerd waarin voorwaarden zijn gegeven waaronder metingen betrouwbaar en reproduceerbaar kunnen worden uitgevoerd. Voor schietgeluid zijn deze voorwaarden te ruim. Ook als aan deze voorwaarden wordt voldaan, treden er niet alleen binnen een meetserie grote variaties op, maar worden er ook grote verschillen gevonden tussen de gemiddelden van meetseries die op verschillende dagen zijn bepaald.

Deze verschillen worden veroorzaakt door veranderingen in de toestand van de atmosfeer. De geluidoverdracht van schietgeluid is hieraan sterk onderhevig. Doordat daarnaast de akoestische energie van een schot in een korte tijdsduur en binnen een klein gebied is geconcentreerd, kunnen er – met name op grote afstand van de bron – van schot tot schot grote niveauverschillen optreden. Bij verkeersgeluid en industriegeluid daarentegen zijn de bronnen in tijd en plaats meer uitgesmeerd, waardoor de invloed van de atmosfeer deels wordt uitgemiddeld. Voor een vergelijkbare nauwkeurigheid zou een extreem groot aantal schoten gemeten moeten worden. Bovendien zou er een middeling over een aantal bij elkaar gelegen meetposities moeten plaatsvinden om lokale verschillen in niveau te elimineren.

Het vraagt dus een onevenredig grote inspanning om binnen een redelijke nauwkeurigheid door middel van metingen de geluidbelasting van schietgeluid vast te stellen. Om deze reden is voor de bepaling van de geluidbelasting in dit voorschrift alleen een berekeningsmethode opgenomen.

4 De nieuwe elementen in dit voorschrift

Net als in de rekenmethoden voor wegverkeers- en industriegeluid wordt in dit voorschrift gebruik gemaakt van een rekenmodel, waarbij de geluidimmissie bepaald wordt door berekeningen van de geluidoverdracht te combineren met bronniveaus uit een gegevenbestand. Nieuw is dat bij de berekening expliciet rekening gehouden wordt met de variaties van de weersomstandigheden. In de vorige paragraaf is al aangegeven, dat de geluidoverdracht sterk afhankelijk is van de plaatselijke weersomstandigheden. Zo is bijvoorbeeld bij meewind (als de geluidvoortplanting gelijk gericht is met de wind) de geluidoverdracht veel beter dan bij tegenwind.

Om deze invloed van het weer op de geluidoverdracht in rekening te brengen, wordt bij de rekenmethode uitgegaan van 27 meteorologische klassen. Voor elke klasse wordt de geluidimmissie bepaald, uitgedrukt als A- en C-gewogen geluidexpositieniveau. Hieruit wordt een hinder-relevante deelbijdrage bepaald tot de geluidbelasting. Het gewogen gemiddelde van deze deelbijdragen over deze 27 meteorologische klassen wordt tenslotte gebruikt voor de bepaling van de (hinder-relevante) geluidbelasting. Er wordt hierbij rekening gehouden met de meteorologische situaties die gedurende een (gemiddeld) jaar voorkomen. De weegfactoren zijn ontleend aan een statistisch meteorologisch model, onder meer gebaseerd op statistische gegevens van de wind in Nederland, verzameld door het KNMI gedurende 30 jaren.

Ter vergelijking: In de bestaande rekenmethoden voor industrielawaai en wegverkeersgeluid wordt van slechts één (meewind)situatie uitgegaan, waarbij een meteocorrectieterm wordt toegepast om te corrigeren voor variaties in de meteo. Deze rekenmethoden zijn grotendeels empirisch, en gebaseerd op een beperkte verzameling van meetresultaten.

Door deze opzet kan met dit nieuwe model de geluidbelasting nauwkeuriger berekend worden. Met name is deze methode nauwkeuriger voor afstanden groter dan ca 1 km van de bron, waar de invloed van de meteo groter is dan voor kortere afstanden.

Doordat gebruik gemaakt is van een statistisch meteorologisch model is de methode ook geschikt om de geluidbelasting te berekenen voor situaties waarbij het gebruik van een schietinrichting gekoppeld is aan bepaalde windrichtingen.

Om de berekeningen zo efficiënt mogelijk uit te kunnen voeren wordt gebruik gemaakt van een vijftal gegevensbestanden, waaruit ‘onderdelen’ van de berekeningen kunnen worden gelezen. Deze ‘onderdelen’ hoeven dus niet telkens opnieuw berekend te worden. Zo is een groot gegevensbestand opgebouwd waarin overdrachtsfuncties zijn opgenomen voor verschillende meteorologische klassen als functie van de afstand tussen bron en rekenpunt, van de hoogte van beide punten, van het bodemtype en van de frequentie. Hierbij is gebruik gemaakt van een numeriek rekenmodel voor geluidvoortplanting in de atmosfeer, kortweg aangeduid met de PE-methode (PE staat voor ‘Parabolic Equation’).

Met behulp van een statistisch meteorologisch model is een tweede gegevensbestand opgebouwd waaruit de weegfactoren kunnen worden gelezen die nodig zijn voor de bepaling van het bovengenoemde gewogen gemiddelde. Voor het geval dat het gebruik van de schietinrichting gekoppeld is aan de heersende windrichting wordt een aangepaste procedure gebruikt waarvoor twee extra gegevensbestanden zijn opgebouwd.

Een vijfde gegevensbestand bevat geluidbronniveaus van voorkomende wapentypen. Voor wapens, die niet in dit gegevensbestand zijn opgenomen en waarvoor geen brongegevens beschikbaar zijn kan gebruik gemaakt worden van een categorie-indeling die beschreven is in TNO rapport: ‘Toelichting op toepassing van methoden voor meten en rekenen aan schietgeluid’ (TNO 2014 R10135). Bij voorkeur moeten de geluidbronniveaus door metingen worden bepaald. De meetmethoden voor vuurwapens zijn beschreven in het genoemde TNO rapport. De meetmethoden zijn gebaseerd op ISO 17201-1 Acoustics – Noise from shooting ranges – Part 1: ‘Sound source energy determination of muzzle blast’.

Ook nieuw is de methode waarmee de geluidimmissie van kogelgeluid bepaald wordt. In principe wordt hierbij van dezelfde basisformule als bij mondings- en detonatiegeluid uitgegaan, met het kenmerkende verschil dat nu ook de bronniveaus rekentechnisch worden vastgesteld.

Voor de modellering van de invloed van afschermende objecten, zoals bijvoorbeeld een geluidscherm, wordt eveneens een fysische benadering gevolgd, die duidelijk afwijkt van de empirische benadering in de rekenmethoden voor verkeersgeluid en industriegeluid. Ook hierbij wordt de schermwerking bepaald als gewogen gemiddelde over de 27 meteorologische klassen.

5 Uitgangspunten

Het voorschrift is gericht op de bepaling van de hinder-relevante geluidbelasting voor woonsituaties in de omgeving van schietinrichtingen bijvoorbeeld in het kader van vergunningverlening, zonering of milieueffectrapportage. De met het voorschrift bepaalde geluidbelasting is de invallende geluidbelasting aan de gevel. Het voorschrift is niet ontwikkeld voor de beoordeling van geluid als kwaliteitskenmerk voor natuurgebieden.

De beoordelingsmethode beschreven in hoofdstuk 3 van het voorschrift is van toepassing voor de berekening van geluidbelastingen met een ondergrens van 50 dB(A). Als er specifieke redenen zijn om een lagere ondergrens te kiezen, kunnen aanvullende berekeningen worden uitgevoerd die in bijlage A zijn beschreven. Met deze methode worden de impulstoeslag en toeslag voor extra laagfrequente componenten in het geluid bij de berekening van de geluidbelasting, slechts meegenomen voor zover het geluid waarneembaar is op het immissiepunt.

Het voorschrift is geen leerboek, waarin de grondbeginselen van akoestiek of in het bijzonder van schietgeluid uiteen worden gezet. Wel zijn specifieke eigenschappen van schietgeluid besproken waar dit zich onderscheidt van andere vormen van geluid zodat berekeningsresultaten geïnterpreteerd kunnen worden. Vanwege het complexe karakter van schietgeluid kan alleen met specialistische methoden een voldoende betrouwbare berekening uitgevoerd worden. Dit houdt in dat deze methoden alleen door akoestische deskundigen kunnen worden toegepast. Bij de opstelling van dit voorschrift is daarom van dit kennisniveau uitgegaan.

Het voorschrift wijkt niet onnodig af van internationaal gebruikelijke methoden. Met name geldt dit voor VDI-bladen, ISO-normen en DIN-normen. Verdere achtergrondinformatie en wetenschappelijke onderbouwing is te vinden in handboeken en in onderzoeksrapporten van TNO die bij het Ministerie van I&M aanwezig zijn.

6 Beoordelingsgrootheid

De geluidbelasting door schietgeluid wordt bepaald uit een combinatie van A- en C-gewogen geluidexpositieniveaus voor een verzameling van 27 meteorologische klassen. Dit is een representatieve deelverzameling van de complexe verzameling van meteorologische situaties, die gedurende een (gemiddeld) jaar kunnen voorkomen. In hoofdstuk 4 wordt beschreven hoe deze geluidexpositieniveaus berekend worden. In hoofdstuk 3 is beschreven hoe hieruit de geluidbelasting Bs wordt bepaald, als hinder-relevante beoordelingsmaat voor schietgeluid (zie § 2.5).

Door uit te gaan van een verzameling van meteorologische klassen kan met het schietgeluidmodel onder andere onderscheid gemaakt worden tussen de verschillen in geluidoverdracht gedurende de meteorologische dag en nacht en is het schietgeluidmodel ook toepasbaar in situaties waarin het gebruik van schietinrichtingen gerelateerd is aan de windrichting. Bij de bepaling van de geluidbelasting wordt bovendien het effect van de asymmetrische windroos in rekening gebracht. Het schietgeluidmodel onderscheidt zich hierin van de bestaande rekenmodellen voor het geluid van weg- en railverkeer en de industrie waarbij de invloed van de meteorologie op de geluidoverdracht minder expliciet in rekening wordt gebracht.

Voor de beoordeling van schietgeluid wordt de dag-avond-nachtwaarde (Bs,dan) gebruikt, die bepaald wordt als een gewogen gemiddelde van de Bs waarden voor de verschillende juridische beoordelingsperioden (Bs,dag, Bs,avond, Bs,nacht). Net als in de beoordelingsprocedures voor wegverkeers- en industriegeluid wordt voor de avond- en nachtperiode een extra toeslag van 5 en 10 dB gehanteerd. In de formules voor de berekening van de geluidbelasting zijn deze toeslagen reeds verwerkt.

Daarnaast wordt voor de dagperiode van de zondag een extra toeslag van 5 dB gehanteerd om de extra hinder van schieten op zondag te verdisconteren. Zodoende wordt de dagperiode van de zondag behandeld als ware het een avondperiode. Deze toeslag is op een eenvoudige manier in de formule verwerkt door in de berekening het aantal schoten op zondag voor de dagperiode zwaarder mee te tellen. Een feestdag wordt hierbij ook als een zondag beschouwd.

Informatie geldend op 07-07-2023

Regelgeving die op dit bijlage is gebaseerd (gedelegeerde regelgeving)

Geen

Beleidsregels en circulaires die dit bijlage als wettelijke bevoegdheid hebben

Geen

Artikelen of vergelijkbare tekst die verwijzen naar dit bijlage

  1. Activiteitenregeling milieubeheer
    artikel: 3.118a, 3.118

  2. Beleidsregel schietlawaai defensieterreinen
    tekst: tekst

Overzicht van wijzigingen voor dit bijlage

(07-07-2023)

Ontstaansbron

Inwerkingtreding

Datum van inwerking- treding

Terugwerkende kracht

Betreft

Ondertekening

Bekendmaking

Kamerstukken

Ondertekening

Bekendmaking

Opmerking

01-01-2024

intrekking-regeling

01-12-2020

Stcrt. 2020, 64380

Stcrt. 2023, 11246

01-01-2017

wijziging

28-11-2016

Stcrt. 2016, 65496

28-11-2016

Stcrt. 2016, 65496

01-01-2016

nieuw

30-09-2015

Stcrt. 2015, 29035

21-11-2015

Stb. 2015, 450

Inwtr. 1

Opmerkingen

  • 1) Treedt in werking op het tijdstip waarop artikel I, onderdelen A tot en met X, Z tot en met IIIIII, en de artikelen II tot en met VII van het Wijzigingsbesluit Activiteitenbesluit milieubeheer, Besluit omgevingsrecht en enkele andere besluiten (nieuwe activiteiten) in werking treden.